
LINEAR SYSTEM
THEORY AND DESIGN
Third Edition

Chi-Tsong Chen
State University of New York at Stony Brook

New York Oxford
OXFORD UNIVERSITY PRESS
1999

OXFORD UNIVERSITY PRESS

Oxford New York
Athens Auckland Bangkok Bogotá Buenos Aires Calcutta

Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai

Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw

and associated companies in
Berlin Ibadan

Copyright © 1999 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.

198 Madison Avenue, New York, New York 10016

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior
permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
Chen, Chi-Tsong

Linear system theory and design / by Chi-Tsong Chen. — 3rd ed.
p. cm. — (The Oxford series in electrical and computer engineering)
Includes bibliographical references and index.
ISBN 0-19-511777-8 (cloth).
1. Linear systems. 2. System design. I. Title. II. Series.

QA402.C44 1998
629.8'32—dc21 97-35535

CIP

Printing (last digit): 9 8 7 6 5 4 3 2 1

Printed in the United States of America
on acid-free paper

Contents

Preface xi

Chapter 1: Introduction 1

1.1 Introduction 1
1.2 Overview 2

Chapter 2: Mathematical Descriptions of Systems 5

2.1 Introduction 5
2.1.1 Causaliity and Lumpedness 6

2.2 Linear Systems 7
2.3 Linear Time-Invariant (LTI) Systems 11

2.3.1 Op-Amp Circuit Implementation 16
2.4 Linearization 17
2.5 Examples 18

2.5.1 RLC Networks 26
2.6 Discrete-Time Systems 31
2.7 Concluding Remarks 37
Problems 38

Chapter 3: Linear Algebra 44

3.1 Introduction 44
3.2 Basis, Representation, and Orthonormalization 45
3.3 Linear Algebraic Equations 48
3.4 Similarity Transformation 53
3.5 Diagonal Form and Jordan Form 55
3.6 Functions of a Square Matrix 61
3.7 Lyapunov Equation 70
3.8 Some Useful Formulas 71
3.9 Quadratic Form and Positive Definiteness 73
3.10 Singular-Value Decomposition 76
3.11 Norms of Matrices 78
Problems 78

vii

viii CONTENTS

Chapter 4: State-Space Solutions and Realizations 86

4.1 Introduction 86
4.2 Solution of LTI State Equations 87

4.2.1 Discretization 90
4.2.2 Solution of Discrete-Time Equations 92

4.3 Equivalent State Equations 93
4.3.1 Canonical Forms 97
4.3.2 Magnitude Scaling in Op-Amp Circuits 98

4.4 Realizations 100
4.5 Solution of Linear Time-Varying (LTV) Equations 106

4.5.1 Discrete-Time Case 110
4.6 Equivalent Time-Varying Equations 111
4.7 Time-Varying Realizations 115
Problems 117

Chapter 5: Stability 121

5.1 Introduction 121
5.2 Input–Output Stability of LTI Systems 121

5.2.1 Discrete-Time Case 126
5.3 Internal Stability 129

5.3.1 Discrete-Time Case 131
5.4 Lyapunov Theorem 132

5.4.1 Discrete-Time Case 135
5.5 Stability of LTV Systems 137
Problems 140

Chapter 6: Controllability and Observability 143

6.1 Introduction 143
6.2 Controllability 144

6.2.1 Controllablity Indices 150
6.3 Observability 153

6.3.1 Observability Indices 157
6.4 Canonical Decomposition 158
6.5 Conditions in Jordan-Form Equations 164
6.6 Discrete-Time State Equations 169

6.6.1 Controllability to the Origin and Reachability 171
6.7 Controllability After Sampling 172
6.8 LTV State Equations 176
Problems 180

Chapter 7: Minimal Realizations and Coprime Fractions 184

7.1 Introduction 184
7.2 Implications of Coprimeness 185

7.2.1 Minimal Realizations 189

Contents ix

7.3 Computing Coprime Fractions 192
7.3.1 QR Decomposition 195

7.4 Balanced Realization 197
7.5 Realizations from Markov Parameters 200
7.6 Degree of Transfer Matrices 205
7.7 Minimal Realizations—Matrix Case 207
7.8 Matrix Polynomial Fractions 209

7.8.1 Column and Row Reducedness 212
7.8.2 Computing Matrix Coprime Fractions 214

7.9 Realizations from Matrix Coprime Fractions 220
7.10 Realizations from Matrix Markov Parameters 225
7.11 Concluding Remarks 227
Problems 228

Chapter 8: State Feedback and State Estimators 231

8.1 Introduction 231
8.2 State Feedback 232

8.2.1 Solving the Lyapunov Equation 239
8.3 Regulation and Tracking 242

8.3.1 Robust Tracking and Disturbance Rejection 243
8.3.2 Stabilization 247

8.4 State Estimator 247
8.4.1 Reduced-Dimensional State Estimator 251

8.5 Feedback from Estimated States 253
8.6 State Feedback—Multivariable Case 255

8.6.1 Cyclic Design 256
8.6.2 Lyapunov-Equation Method 259
8.6.3 Canonical-Form Method 260
8.6.4 Effect on Transfer Matrices 262

8.7 State estimators—Multivariable Case 263
8.8 Feedback from Estimated States—Multivariable Case 265
Problems 266

Chapter 9: Pole Placement and Model Matching 269

9.1 Introduction 269
9.1.1 Compensator Equations–Classical Method 271

9.2 Unity-Feedback Configuration–Pole Placement 273
9.2.1 Regulation and Tracking 275
9.2.2 Robust Tracking and Disturbance Rejection 277
9.2.3 Embedding Internal Models 280

9.3 Implementable Transfer Functions 283
9.3.1 Model Matching–Two-Parameter Configuration 286
9.3.2 Implementation of Two-Parameter Compensators 291

9.4 Multivariable Unity-Feedback Systems 292
9.4.1 Regulation and Tracking 302
9.4.2 Robust Tracking and Disturbance Rejection 303

9.5 Multivariable Model Matching–Two-Parameter
Configuration 306

x CONTENTS

9.5.1 Decoupling 311
9.6 Concluding Remarks 314
Problems 315

References 319

Answers to Selected Problems 321

Index 331

Preface

This text is intended for use in senior/first-year graduate courses on linear systems and
multivariable system design in electrical, mechanical, chemical, and aeronautical departments.
It may also be useful to practicing engineers because it contains many design procedures. The
mathematical background assumed is a working knowledge of linear algebra and the Laplace
transform and an elementary knowledge of differential equations.

Linear system theory is a vast field. In this text, we limit our discussion to the conventional
approaches of state-space equations and the polynomial fraction method of transfer matrices.
The geometric approach, the abstract algebraic approach, rational fractions, and optimization
are not discussed.

We aim to achieve two objectives with this text. The first objective is to use simple
and efficient methods to develop results and design procedures. Thus the presentation is
not exhaustive. For example, in introducing polynomial fractions, some polynomial theory
such as the Smith–McMillan form and Bezout identities are not discussed. The second
objective of this text is to enable the reader to employ the results to carry out design.
Thus most results are discussed with an eye toward numerical computation. All design
procedures in the text can be carried out using any software package that includes singular-
value decomposition, QR decomposition, and the solution of linear algebraic equations and
the Lyapunov equation. We give examples using MATLAB®, as the package1 seems to be the
most widely available.

This edition is a complete rewriting of the book Linear System Theory and Design, which
was the expanded edition of Introduction to Linear System Theory published in 1970. Aside
from, hopefully, a clearer presentation and a more logical development, this edition differs
from the book in many ways:

● The order of Chapters 2 and 3 is reversed. In this edition, we develop mathematical
descriptions of systems before reviewing linear algebra. The chapter on stability is moved
earlier.

● This edition deals only with real numbers and foregoes the concept of fields. Thus it is
mathematically less abstract than the original book. However, all results are still stated as
theorems for easy reference.

● In Chapters 4 through 6, we discuss first the time-invariant case and then extend it to the
time-varying case, instead of the other way around.

1. MATLAB is a registered trademark of the MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760-1500. Phone:
508-647-7000, fax: 508-647-7001, E-mail: info@mathworks.com, http://www.mathworks.com.

xi

xii PREFACE

● The discussion of discrete-time systems is expanded.

● In state-space design, Lyapunov equations are employed extensively and multivariable
canonical forms are downplayed. This approach is not only easier for classroom presentation
but also provides an attractive method for numerical computation.

● The presentation of the polynomial fraction method is streamlined. The method is equated
with solving linear algebraic equations. We then discuss pole placement using a one-degree-
of-freedom configuration, and model matching using a two-degree-of-freedom configura-
tion.

● Examples using MATLAB are given throughout this new edition.

This edition is geared more for classroom use and engineering applications; therefore, many
topics in the original book are deleted, including strict system equivalence, deterministic iden-
tification, computational issues, some multivariable canonical forms, and decoupling by state
feedback. The polynomial fraction design in the input/output feedback (controller/estimator)
configuration is deleted. Instead we discuss design in the two-parameter configuration. This
configuration seems to be more suitable for practical application. The eight appendices in the
original book are either incorporated into the text or deleted.

The logical sequence of all chapters is as follows:

Chap. 1–5 ⇒

Chap. 6 ⇒

{
Chap. 8
Chap. 7

Sec. 7.1–7.3 ⇒ Sec. 9.1–9.3
⇒ Sec. 7.6–7.8 ⇒ Sec. 9.4–9.5

In addition, the material in Section 7.9 is needed to study Section 8.6.4. However, Section 8.6.4
may be skipped without loss of continuity. Furthermore, the concepts of controllability and
observability in Chapter 6 are useful, but not essential for the material in Chapter 7. All minimal
realizations in Chapter 7 can be checked using the concept of degrees, instead of checking
controllability and observability. Therefore Chapters 6 and 7 are essentially independent.

This text provides more than enough material for a one-semester course. A one-semester
course at Stony Brook covers Chapters 1 through 6, Sections 8.1–8.5, 7.1–7.2, and 9.1–9.3.
Time-varying systems are not covered. Clearly, other arrangements are also possible for a
one-semester course. A solutions manual is available from the publisher.

I am indebted to many people in revising this text. Professor Imin Kao and Mr. Juan
Ochoa helped me with MATLAB. Professor Zongli Lin and Mr. T. Anantakrishnan read
the whole manuscript and made many valuable suggestions. I am grateful to Dean Yacov
Shamash, College of Engineering and Applied Sciences, SUNY at Stony Brook, for his
encouragement. The revised manuscript was reviewed by Professor Harold Broberg, EET
Department, Indiana Purdue University; Professor Peyman Givi, Department of Mechanical
and Aerospace Engineering, State University of New York at Buffalo; Professor Mustafa
Khammash, Department of Electrical and Computer Engineering, Iowa State University; and
Professor B. Ross Barmish, Department of Electrical and Computer Engineering, University
of Wisconsin. Their detailed and critical comments prompted me to restructure some sections
and to include a number of mechanical vibration problems. I thank them all.

Preface xiii

I am indebted to Mr. Bill Zobrist of Oxford University Press who persuaded me to
undertake this revision. The people at Oxford University Press, including Krysia Bebick,
Jasmine Urmeneta, Terri O’Prey, and Kristina Della Bartolomea were most helpful in this
undertaking. Finally, I thank my wife, Bih-Jau, for her support during this revision.

Chi-Tsong Chen

Chapter

1
Introduction

1.1 Introduction

The study and design of physical systems can be carried out using empirical methods. We can
apply various signals to a physical system and measure its responses. If the performance is not
satisfactory, we can adjust some of its parameters or connect to it a compensator to improve
its performance. This approach relies heavily on past experience and is carried out by trial and
error and has succeeded in designing many physical systems.

Empirical methods may become unworkable if physical systems are complex or too
expensive or too dangerous to be experimented on. In these cases, analytical methods become
indispensable. The analytical study of physical systems consists of four parts: modeling,
development of mathematical descriptions, analysis, and design. We briefly introduce each
of these tasks.

The distinction between physical systems and models is basic in engineering. For example,
circuits or control systems studied in any textbook are models of physical systems. A resistor
with a constant resistance is a model; it will burn out if the applied voltage is over a limit.
This power limitation is often disregarded in its analytical study. An inductor with a constant
inductance is again a model; in reality, the inductance may vary with the amount of current
flowing through it. Modeling is a very important problem, for the success of the design depends
on whether the physical system is modeled properly.

A physical system may have different models depending on the questions asked. It may
also be modeled differently in different operational ranges. For example, an electronic amplifier
is modeled differently at high and low frequencies. A spaceship can be modeled as a particle
in investigating its trajectory; however, it must be modeled as a rigid body in maneuvering.
A spaceship may even be modeled as a flexible body when it is connected to a space station.
In order to develop a suitable model for a physical system, a thorough understanding of the
physical system and its operational range is essential. In this text, we will call a model of a
physical system simply a system. Thus a physical system is a device or a collection of devices
existing in the real world; a system is a model of a physical system.

Once a system (or model) is selected for a physical system, the next step is to apply
various physical laws to develop mathematical equations to describe the system. For ex-
ample, we apply Kirchhoff’s voltage and current laws to electrical systems and Newton’s
law to mechanical systems. The equations that describe systems may assume many forms;

1

2 INTRODUCTION

they may be linear equations, nonlinear equations, integral equations, difference equations,
differential equations, or others. Depending on the problem under study, one form of equation
may be preferable to another in describing the same system. In conclusion, a system may
have different mathematical-equation descriptions just as a physical system may have many
different models.

After a mathematical description is obtained, we then carry out analyses—quantitative
and/or qualitative. In quantitative analysis, we are interested in the responses of systems
excited by certain inputs. In qualitative analysis, we are interested in the general properties
of systems, such as stability, controllability, and observability. Qualitative analysis is very
important, because design techniques may often evolve from this study.

If the response of a system is unsatisfactory, the system must be modified. In some
cases, this can be achieved by adjusting some parameters of the system; in other cases,
compensators must be introduced. Note that the design is carried out on the model of the
physical system. If the model is properly chosen, then the performance of the physical system
should be improved by introducing the required adjustments or compensators. If the model is
poor, then the performance of the physical system may not improve and the design is useless.
Selecting a model that is close enough to a physical system and yet simple enough to be studied
analytically is the most difficult and important problem in system design.

1.2 Overview

The study of systems consists of four parts: modeling, setting up mathematical equations,
analysis, and design. Developing models for physical systems requires knowledge of the
particular field and some measuring devices. For example, to develop models for transistors
requires a knowledge of quantum physics and some laboratory setup. Developing models
for automobile suspension systems requires actual testing and measurements; it cannot be
achieved by use of pencil and paper. Computer simulation certainly helps but cannot replace
actual measurements. Thus the modeling problem should be studied in connection with the
specific field and cannot be properly covered in this text. In this text, we shall assume that
models of physical systems are available to us.

The systems to be studied in this text are limited to linear systems. Using the concept of
linearity, we develop in Chapter 2 that every linear system can be described by

y(t) =
∫ t

t0

G(t, τ)u(τ) dτ (1.1)

This equation describes the relationship between the input u and output y and is called the
input–output or external description. If a linear system is lumped as well, then it can also be
described by

ẋ(t) = A(t)x(t) + B(t)u(t) (1.2)

y(t) = C(t)x(t) + D(t)u(t) (1.3)

Equation (1.2) is a set of first-order differential equations and Equation (1.3) is a set of algebraic
equations. They are called the internal description of linear systems. Because the vector x is
called the state, the set of two equations is called the state-space or, simply, the state equation.

1.2 Overview 3

If a linear system has, in addition, the property of time invariance, then Equations (1.1)
through (1.3) reduce to

y(t) =
∫ t

0
G(t − τ)u(τ) dτ (1.4)

and

ẋ(t) = Ax(t) + Bu(t) (1.5)

y(t) = Cx(t) + Du(t) (1.6)

For this class of linear time-invariant systems, the Laplace transform is an important tool in
analysis and design. Applying the Laplace transform to (1.4) yields

ŷ(s) = Ĝ(s)û(s) (1.7)

where a variable with a circumflex denotes the Laplace transform of the variable. The function
Ĝ(s) is called the transfer matrix. Both (1.4) and (1.7) are input–output or external descriptions.
The former is said to be in the time domain and the latter in the frequency domian.

Equations (1.1) through (1.6) are called continuous-time equations because their time
variable t is a continuum defined at every time instant in (−∞, ∞). If the time is defined
only at discrete instants, then the corresponding equations are called discrete-time equations.
This text is devoted to the analysis and design centered around (1.1) through (1.7) and their
discrete-time counterparts.

We briefly discuss the contents of each chapter. In Chapter 2, after introducing the
aforementioned equations from the concepts of lumpedness, linearity, and time invariance,
we show how these equations can be developed to describe systems. Chapter 3 reviews linear
algebraic equations, the Lyapunov equation, and other pertinent topics that are essential for
this text. We also introduce the Jordan form because it will be used to establish a number of
results. We study in Chapter 4 solutions of the state-space equations in (1.2) and (1.5). Different
analyses may lead to different state equations that describe the same system. Thus we introduce
the concept of equivalent state equations. The basic relationship between state-space equations
and transfer matrices is also established. Chapter 5 introduces the concepts of bounded-input
bounded-output (BIBO) stability, marginal stability, and asymptotic stability. Every system
must be designed to be stable; otherwise, it may burn out or disintegrate. Therefore stability
is a basic system concept. We also introduce the Lyapunov theorem to check asymptotic
stability.

Chapter 6 introduces the concepts of controllability and observability. They are essential
in studying the internal structure of systems. A fundamental result is that the transfer matrix
describes only the controllable and observable part of a state equation. Chapter 7 studies
minimal realizations and introduces coprime polynomial fractions. We show how to obtain
coprime fractions by solving sets of linear algebraic equations. The equivalence of controllable
and observable state equations and coprime polynomial fractions is established.

The last two chapters discuss the design of time-invariant systems. We use controllable
and observable state equations to carry out design in Chapter 8 and use coprime polynomial
fractions in Chapter 9. We show that, under the controllability condition, all eigenvalues
of a system can be arbitrarily assigned by introducing state feedback. If a state equation
is observable, full-dimensional and reduced-dimensional state estimators, with any desired

4 INTRODUCTION

eigenvalues, can be constructed to generate estimates of the state. We also establish the
separation property. In Chapter 9, we discuss pole placement, model matching, and their
applications in tracking, disturbance rejection, and decoupling. We use the unity-feedback
configuration in pole placement and the two-parameter configuration in model matching. In our
design, no control performances such as rise time, settling time, and overshoot are considered;
neither are constraints on control signals and on the degree of compensators. Therefore this
is not a control text per se. However, all results are basic and useful in designing linear time-
invariant control systems.

Chapter

2
Mathematical

Descriptions of Systems

2.1 Introduction

The class of systems studied in this text is assumed to have some input terminals and output
terminals as shown in Fig. 2.1. We assume that if an excitation or input is applied to the input
terminals, a unique response or output signal can be measured at the output terminals. This
unique relationship between the excitation and response, input and output, or cause and effect
is essential in defining a system. A system with only one input terminal and only one output
terminal is called a single-variable system or a single-input single-output (SISO) system.
A system with two or more input terminals and/or two or more output terminals is called
a multivariable system. More specifically, we can call a system a multi-input multi-output
(MIMO) system if it has two or more input terminals and output terminals, a single-input
multi-output (SIMO) system if it has one input terminal and two or more output terminals.

Figure 2.1 System.

5

6 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

A system is called a continuous-time system if it accepts continuous-time signals as
its input and generates continuous-time signals as its output. The input will be denoted by
lowercase italic u(t) for single input or by boldface u(t) for multiple inputs. If the system has
p input terminals, then u(t) is a p×1 vector or u = [u1 u2 · · · up]′, where the prime denotes
the transpose. Similarly, the output will be denoted by y(t) or y(t). The time t is assumed to
range from −∞ to ∞.

A system is called a discrete-time system if it accepts discrete-time signals as its input
and generates discrete-time signals as its output. All discrete-time signals in a system will
be assumed to have the same sampling period T . The input and output will be denoted by
u[k] := u(kT) and y[k] := y(kT), where k denotes discrete-time instant and is an integer
ranging from −∞ to ∞. They become boldface for multiple inputs and multiple outputs.

2.1.1 Causality and Lumpedness

A system is called a memoryless system if its output y(t0) depends only on the input applied
at t0; it is independent of the input applied before or after t0. This will be stated succinctly as
follows: current output of a memoryless system depends only on current input; it is independent
of past and future inputs. A network that consists of only resistors is a memoryless system.

Most systems, however, have memory. By this we mean that the output at t0 depends on
u(t) for t < t0, t = t0, and t > t0. That is, current output of a system with memory may depend
on past, current, and future inputs.

A system is called a causal or nonanticipatory system if its current output depends on
past and current inputs but not on future input. If a system is not causal, then its current output
will depend on future input. In other words, a noncausal system can predict or anticipate what
will be applied in the future. No physical system has such capability. Therefore every physical
system is causal and causality is a necessary condition for a system to be built or implemented
in the real world. This text studies only causal systems.

Current output of a causal system is affected by past input. How far back in time will the
past input affect the current output? Generally, the time should go all the way back to minus
infinity. In other words, the input from −∞ to time t has an effect on y(t). Tracking u(t)

from t = −∞ is, if not impossible, very inconvenient. The concept of state can deal with this
problem.

Definition 2.1 The state x(t0) of a system at time t0 is the information at t0 that, together
with the input u(t), for t ≥ t0, determines uniquely the output y(t) for all t ≥ t0.

By definition, if we know the state at t0, there is no more need to know the input u(t) applied
before t0 in determining the output y(t) after t0. Thus in some sense, the state summarizes the
effect of past input on future output. For the network shown in Fig. 2.2, if we know the voltages
x1(t0) and x2(t0) across the two capacitors and the current x3(t0) passing through the inductor,
then for any input applied on and after t0, we can determine uniquely the output for t ≥ t0.
Thus the state of the network at time t0 is

2.2 Linear Systems 7

Figure 2.2 Network with 3 state variables.

x(t0) =

 x1(t0)

x2(t0)

x3(t0)




It is a 3×1 vector. The entries of x are called state variables. Thus, in general, we may consider
the initial state simply as a set of initial conditions.

Using the state at t0, we can express the input and output of a system as

x(t0)

u(t), t ≥ t0

}
→ y(t), t ≥ t0 (2.1)

It means that the output is partly excited by the initial state at t0 and partly by the input applied
at and after t0. In using (2.1), there is no more need to know the input applied before t0 all the
way back to −∞. Thus (2.1) is easier to track and will be called a state-input–output pair.

A system is said to be lumped if its number of state variables is finite or its state is a
finite vector. The network in Fig. 2.2 is clearly a lumped system; its state consists of three
numbers. A system is called a distributed system if its state has infinitely many state variables.
The transmission line is the most well known distributed system. We give one more example.

Example 2.1 Consider the unit-time delay system defined by

y(t) = u(t − 1)

The output is simply the input delayed by one second. In order to determine {y(t), t ≥ t0}
from {u(t), t ≥ t0}, we need the information {u(t), t0 −1 ≤ t < t0}. Therefore the initial state
of the system is {u(t), t0 − 1 ≤ t < t0}. There are infinitely many points in {t0 − 1 ≤ t < t0}.
Thus the unit-time delay system is a distributed system.

2.2 Linear Systems

A system is called a linear system if for every t0 and any two state-input–output pairs

xi (t0)

ui (t), t ≥ t0

}
→ yi (t), t ≥ t0

for i = 1, 2, we have

8 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

x1(t0) + x2(t0)

u1(t) + u2(t), t ≥ t0

}
→ y1(t) + y2(t), t ≥ t0 (additivity)

and

αx1(t0)

αu1(t), t ≥ t0

}
→ αy1(t), t ≥ t0 (homogeneity)

for any real constant α. The first property is called the additivity property, the second, the
homogeneity property. These two properties can be combined as

α1x1(t0) + α2x2(t0)

α1u1(t) + α2u2(t), t ≥ t0

}
→ α1y1(t) + α2y2(t), t ≥ t0

for any real constants α1 and α2, and is called the superposition property. A system is called
a nonlinear system if the superposition property does not hold.

If the input u(t) is identically zero for t ≥ t0, then the output will be excited exclusively
by the initial state x(t0). This output is called the zero-input response and will be denoted by
yzi or

x(t0)

u(t) ≡ 0, t ≥ t0

}
→ yzi(t), t ≥ t0

If the initial state x(t0) is zero, then the output will be excited exclusively by the input. This
output is called the zero-state response and will be denoted by yzs or

x(t0) = 0
u(t), t ≥ t0

}
→ yzs(t), t ≥ t0

The additivity property implies

Output due to

{
x(t0)

u(t), t ≥ t0
= output due to

{
x(t0)

u(t) ≡ 0, t ≥ t0

+ output due to

{
x(t0) = 0
u(t), t ≥ t0

or

Response = zero-input response + zero-state response

Thus the response of every linear system can be decomposed into the zero-state response and
the zero-input response. Furthermore, the two responses can be studied separately and their
sum yields the complete response. For nonlinear systems, the complete response can be very
different from the sum of the zero-input response and zero-state response. Therefore we cannot
separate the zero-input and zero-state responses in studying nonlinear systems.

If a system is linear, then the additivity and homogeneity properties apply to zero-state
responses. To be more specific, if x(t0) = 0, then the output will be excited exclusively by
the input and the state-input–output equation can be simplified as {ui → yi}. If the system is
linear, then we have {u1 + u2 → y1 + y2} and {αui → αyi} for all α and all ui . A similar
remark applies to zero-input responses of any linear system.

Input–output description We develop a mathematical equation to describe the zero-state
response of linear systems. In this study, the initial state is assumed implicitly to be zero and the

2.2 Linear Systems 9

output is excited exclusively by the input. We consider first SISO linear systems. Let δ�(t − t1)

be the pulse shown in Fig. 2.3. It has width � and height 1/� and is located at time t1. Then
every input u(t) can be approximated by a sequence of pulses as shown in Fig. 2.4. The pulse
in Fig. 2.3 has height 1/�; thus δ�(t − ti)� has height 1 and the left-most pulse in Fig. 2.4
with height u(ti) can be expressed as u(ti)δ�(t − t1)�. Consequently, the input u(t) can be
expressed symbolically as

u(t) ≈
∑

i

u(ti)δ�(t − ti)�

Let g�(t, ti) be the output at time t excited by the pulse u(t) = δ�(t − ti) applied at time ti .
Then we have

δ�(t − ti) → g�(t, ti)

δ�(t − ti)u(ti)� → g�(t, ti)u(ti)� (homogeneity)∑
i

δ�(t − ti)u(ti)� →
∑

i

g�(t, ti)u(ti)� (additivity)

Thus the output y(t) excited by the input u(t) can be approximated by

y(t) ≈
∑

i

g�(t, ti)u(ti)� (2.2)

Figure 2.3 Pulse at t1.

Figure 2.4 Approximation of input signal.

10 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Now if � approaches zero, the pulse δ�(t−ti) becomes an impulse at ti , denoted by δ(t−ti), and
the corresponding output will be denoted by g(t, ti). As � approaches zero, the approximation
in (2.2) becomes an equality, the summation becomes an integration, the discrete ti becomes
a continuum and can be replaced by τ , and � can be written as dτ . Thus (2.2) becomes

y(t) =
∫ ∞

−∞
g(t, τ)u(τ) dτ (2.3)

Note that g(t, τ) is a function of two variables. The second variable denotes the time at which
the impulse input is applied; the first variable denotes the time at which the output is observed.
Because g(t, τ) is the response excited by an impulse, it is called the impulse response.

If a system is causal, the output will not appear before an input is applied. Thus we have

Causal ⇐⇒ g(t, τ) = 0 for t < τ

A system is said to be relaxed at t0 if its initial state at t0 is 0. In this case, the output y(t),
for t ≥ t0, is excited exclusively by the input u(t) for t ≥ t0. Thus the lower limit of the
integration in (2.3) can be replaced by t0. If the system is causal as well, then g(t, τ) = 0 for
t < τ . Thus the upper limit of the integration in (2.3) can be replaced by t . In conclusion,
every linear system that is causal and relaxed at t0 can be described by

y(t) =
∫ t

t0

g(t, τ)u(τ) dτ (2.4)

In this derivation, the condition of lumpedness is not used. Therefore any lumped or distributed
linear system has such an input–output description. This description is developed using only
the additivity and homogeneity properties; therefore every linear system, be it an electrical
system, a mechanical system, a chemical process, or any other system, has such a description.

If a linear system has p input terminals and q output terminals, then (2.4) can be
extended to

y(t) =
∫ t

t0

G(t, τ)u(τ) dτ (2.5)

where

G(t, τ) =




g11(t, τ) g12(t, τ) · · · g1p(t, τ)

g21(t, τ) g22(t, τ) · · · g2p(t, τ)

...
...

...

gq1(t, τ) gq2(t, τ) · · · gqp(t, τ)




and gij (t, τ) is the response at time t at the ith output terminal due to an impulse applied at
time τ at the j th input terminal, the inputs at other terminals being identically zero. That is,
gij (t, τ) is the impulse response between the j th input terminal and the ith output terminal.
Thus G is called the impulse response matrix of the system. We stress once again that if a
system is described by (2.5), the system is linear, relaxed at t0, and causal.

State-space description Every linear lumped system can be described by a set of equations
of the form

2.3 Linear Time-Invariant (LTI) Systems 11

ẋ(t) = A(t)x(t) + B(t)u(t) (2.6)

y(t) = C(t)x(t) + D(t)u(t) (2.7)

where ẋ := dx/dt .1 For a p-input q-output system, u is a p × 1 vector and y is a q × 1 vector.
If the system has n state variables, then x is an n × 1 vector. In order for the matrices in (2.6)
and (2.7) to be compatible, A, B, C, and D must be n × n, n × p, q × n, and q × p matrices.
The four matrices are all functions of time or time-varying matrices. Equation (2.6) actually
consists of a set of n first-order differential equations. Equation (2.7) consists of q algebraic
equations. The set of two equations will be called an n-dimensional state-space equation or,
simply, state equation. For distributed systems, the dimension is infinity and the two equations
in (2.6) and (2.7) are not used.

The input–output description in (2.5) was developed from the linearity condition. The
development of the state-space equation from the linearity condition, however, is not as simple
and will not be attempted. We will simply accept it as a fact.

2.3 Linear Time-Invariant (LTI) Systems

A system is said to be time invariant if for every state-input–output pair

x(t0)

u(t), t ≥ t0

}
→ y(t), t ≥ t0

and any T , we have

x(t0 + T)

u(t − T), t ≥ t0 + T

}
→ y(t − T), t ≥ t0 + T (time shifting)

It means that if the initial state is shifted to time t0 +T and the same input waveform is applied
from t0 + T instead of from t0, then the output waveform will be the same except that it starts
to appear from time t0 + T . In other words, if the initial state and the input are the same, no
matter at what time they are applied, the output waveform will always be the same. Therefore,
for time-invariant systems, we can always assume, without loss of generality, that t0 = 0. If a
system is not time invariant, it is said to be time varying.

Time invariance is defined for systems, not for signals. Signals are mostly time varying.
If a signal is time invariant such as u(t) = 1 for all t , then it is a very simple or a trivial signal.
The characteristics of time-invariant systems must be independent of time. For example, the
network in Fig. 2.2 is time invariant if Ri, Ci , and Li are constants.

Some physical systems must be modeled as time-varying systems. For example, a burning
rocket is a time-varying system, because its mass decreases rapidly with time. Although the
performance of an automobile or a TV set may deteriorate over a long period of time, its
characteristics do not change appreciable in the first couple of years. Thus a large number of
physical systems can be modeled as time-invariant systems over a limited time period.

1. We use A := B to denote that A, by definition, equals B. We use A =: B to denote that B, by definition, equals A.

12 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Input–output description The zero-state response of a linear system can be described by
(2.4). Now if the system is time invariant as well, then we have2

g(t, τ) = g(t + T , τ + T) = g(t − τ, 0) = g(t − τ)

for any T . Thus (2.4) reduces to

y(t) =
∫ t

0
g(t − τ)u(τ) dτ =

∫ t

0
g(τ)u(t − τ) dτ (2.8)

where we have replaced t0 by 0. The second equality can easily be verified by changing the
variable. The integration in (2.8) is called a convolution integral. Unlike the time-varying case
where g is a function of two variables, g is a function of a single variable in the time-invariant
case. By definition g(t) = g(t − 0) is the output at time t due to an impulse input applied at
time 0. The condition for a linear time-invariant system to be causal is g(t) = 0 for t < 0.

Example 2.2 The unit-time delay system studied in Example 2.1 is a device whose output
equals the input delayed by 1 second. If we apply the impulse δ(t) at the input terminal, the
output is δ(t − 1). Thus the impulse response of the system is δ(t − 1).

Example 2.3 Consider the unity-feedback system shown in Fig. 2.5(a). It consists of a
multiplier with gain a and a unit-time delay element. It is a SISO system. Let r(t) be the
input of the feedback system. If r(t) = δ(t), then the output is the impulse response of the
feedback system and equals

gf (t) = aδ(t − 1) + a2δ(t − 2) + a3δ(t − 3) + · · · =
∞∑
i=1

aiδ(t − i) (2.9)

Let r(t) be any input with r(t) ≡ 0 for t < 0; then the output is given by

y(t) =
∫ t

0
gf (t − τ)r(τ) dτ =

∞∑
i=1

ai

∫ t

0
δ(t − τ − i)r(τ) dτ

=
∞∑
i=1

air(τ)

∣∣∣∣∣
τ=t−i

=
∞∑
i=1

air(t − i)

Because the unit-time delay system is distributed, so is the feedback system.

Figure 2.5 Positive and negative feedback systems.

2. Note that g(t, τ) and g(t − τ) are two different functions. However, for convenience, the same symbol g is used.

2.3 Linear Time-Invariant (LTI) Systems 13

Transfer-function matrix The Laplace transform is an important tool in the study of linear
time-invariant (LTI) systems. Let ŷ(s) be the Laplace transform of y(t), that is,

ŷ(s) =
∫ ∞

0
y(t)e−st dt

Throughout this text, we use a variable with a circumflex to denote the Laplace transform of
the variable. For causal systems, we have g(t) = 0 for t < 0 or g(t − τ) = 0 for τ > t . Thus
the upper integration limit in (2.8) can be replaced by ∞. Substituting (2.8) and interchanging
the order of integrations, we obtain

ŷ(s) =
∫ ∞

t=0

(∫ ∞

τ=0
g(t − τ)u(τ) dτ

)
e−s(t−τ)e−sτ dt

=
∫ ∞

τ=0

(∫ ∞

t=0
g(t − τ)e−s(t−τ) dt

)
u(τ)e−sτ dτ

which becomes, after introducing the new variable v = t − τ ,

ŷ(s) =
∫ ∞

τ=0

(∫ ∞

v=−τ

g(v)e−sv dv

)
u(τ)e−sτ dτ

Again using the causality condition to replace the lower integration limit inside the parentheses
from v = −τ to v = 0, the integration becomes independent of τ and the double integrations
become

ŷ(s) =
∫ ∞

v=0
g(v)e−sv dv

∫ ∞

τ=0
u(τ)e−sτ dτ

or

ŷ(s) = ĝ(s)û(s) (2.10)

where

ĝ(s) =
∫ ∞

0
g(t)e−st dt

is called the transfer function of the system. Thus the transfer function is the Laplace transform
of the impulse response and, conversely, the impulse response is the inverse Laplace transform
of the transfer function. We see that the Laplace transform transforms the convolution integral
in (2.8) into the algebraic equation in (2.10). In analysis and design, it is simpler to use algebraic
equations than to use convolutions. Thus the convolution in (2.8) will rarely be used in the
remainder of this text.

For a p-input q-output system, (2.10) can be extended as


ŷ1(s)

ŷ2(s)

...

ŷq(s)


 =




ĝ11(s) ĝ12(s) · · · ĝ1p(s)

ĝ21(s) ĝ22(s) · · · ĝ2p(s)

...
...

...

ĝq1(s) ĝq2(s) · · · ĝqp(s)






û1(s)

û2(s)

...

ûp(s)




or

ŷ(s) = Ĝ(s)û(s) (2.11)

14 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

where ĝij (s) is the transfer function from the j th input to the ith output. The q × p matrix
Ĝ(s) is called the transfer-function matrix or, simply, transfer matrix of the system.

Example 2.4 Consider the unit-time delay system studied in Example 2.2. Its impulse
response is δ(t − 1). Therefore its transfer function is

ĝ(s) = L[δ(t − 1)] =
∫ ∞

0
δ(t − 1)e−st dt = e−st

∣∣
t=1 = e−s

This transfer function is an irrational function of s.

Example 2.5 Consider the feedback system shown in Fig. 2.5(a). The transfer function of
the unit-time delay element is e−s . The transfer function from r to y can be computed directly
from the block diagram as

ĝf (s) = ae−s

1 − ae−s
(2.12)

This can also be obtained by taking the Laplace transform of the impulse response, which was
computed in (2.9) as

gf (t) =
∞∑
i=1

aiδ(t − i)

Because L[δ(t − i)] = e−is , the Laplace transform of gf (t) is

ĝf (s) = L[gf (t)] =
∞∑
i=1

aie−is = ae−s

∞∑
i=0

(ae−s)i

Using
∞∑
i=0

ri = 1

1 − r

for |r| < 1, we can express the infinite series in closed form as

ĝf (s) = ae−s

1 − ae−s

which is the same as (2.12).

The transfer function in (2.12) is an irrational function of s. This is so because the feedback
system is a distributed system. If a linear time-invariant system is lumped, then its transfer
function will be a rational function of s. We study mostly lumped systems; thus the transfer
functions we will encounter are mostly rational functions of s.

Every rational transfer function can be expressed as ĝ(s) = N(s)/D(s), where N(s) and
D(s) are polynomials of s. Let us use deg to denote the degree of a polynomial. Then ĝ(s) can
be classified as follows:

● ĝ(s) proper ⇔ deg D(s) ≥ deg N(s) ⇔ ĝ(∞) = zero or nonzero constant.

2.3 Linear Time-Invariant (LTI) Systems 15

● ĝ(s) strictly proper ⇔ deg D(s) > deg N(s) ⇔ ĝ(∞) = 0.

● ĝ(s) biproper ⇔ deg D(s) = deg N(s) ⇔ ĝ(∞) = nonzero constant.

● ĝ(s) improper ⇔ deg D(s) < deg N(s) ⇔ |ĝ(∞)| = ∞.

Improper rational transfer functions will amplify high-frequency noise, which often exists in
the real world; therefore improper rational transfer functions rarely arise in practice.

A real or complex number λ is called a pole of the proper transfer function ĝ(s) =
N(s)/D(s) if |ĝ(λ)| = ∞; a zero if ĝ(λ) = 0. If N(s) and D(s) are coprime, that is, have
no common factors of degree 1 or higher, then all roots of N(s) are the zeros of ĝ(s), and all
roots of D(s) are the poles of ĝ(s). In terms of poles and zeros, the transfer function can be
expressed as

ĝ(s) = k
(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)

This is called the zero-pole-gain form. In MATLAB, this form can be obtained from the transfer
function by calling [z,p,k]= tf2zp(num,den).

A rational matrix Ĝ(s) is said to be proper if its every entry is proper or if Ĝ(∞) is a zero
or nonzero constant matrix; it is strictly proper if its every entry is strictly proper or if Ĝ(∞) is
a zero matrix. If a rational matrix Ĝ(s) is square and if both Ĝ(s) and Ĝ−1(s) are proper, then
Ĝ(s) is said to be biproper. We call λ a pole of Ĝ(s) if it is a pole of some entry of Ĝ(s). Thus
every pole of every entry of Ĝ(s) is a pole of Ĝ(s). There are a number of ways of defining
zeros for Ĝ(s). We call λ a blocking zero if it is a zero of every nonzero entry of Ĝ(s). A more
useful definition is the transmission zero, which will be introduced in Chapter 9.

State-space equation Every linear time-invariant lumped system can be described by a set
of equations of the form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.13)

For a system with p inputs, q outputs, and n state variables, A, B, C, and D are, respectively,
n × n, n × p, q × n, and q × p constant matrices. Applying the Laplace transform to (2.13)
yields

sx̂(s) − x(0) = Ax̂(s) + Bû(s)

ŷ(s) = Cx̂(s) + Dû(s)

which implies

x̂(s) = (sI − A)−1x(0) + (sI − A)−1Bû(s) (2.14)

ŷ(s) = C(sI − A)−1x(0) + C(sI − A)−1Bû(s) + Dû(s) (2.15)

They are algebraic equations. Given x(0) and û(s), x̂(s) and ŷ(s) can be computed algebraically
from (2.14) and (2.15). Their inverse Laplace transforms yield the time responses x(t) and
y(t). The equations also reveal the fact that the response of a linear system can be decomposed

16 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

as the zero-state response and the zero-input response. If the initial state x(0) is zero, then
(2.15) reduces to

ŷ(s) = [C(sI − A)−1B + D]û(s)

Comparing this with (2.11) yields

Ĝ(s) = C(sI − A)−1B + D (2.16)

This relates the input–output (or transfer matrix) and state-space descriptions.
The functions tf2ss and ss2tf in MATLAB compute one description from the other.

They compute only the SISO and SIMO cases. For example, [num,den]= ss2tf(a,b,c,
d,1) computes the transfer matrix from the first input to all outputs or, equivalently, the first
column of Ĝ(s). If the last argument 1 in ss2tf(a,b,c,d,1) is replaced by 3, then the
function generates the third column of Ĝ(s).

To conclude this section, we mention that the Laplace transform is not used in studying
linear time-varying systems. The Laplace transform of g(t, τ) is a function of two variables
and L[A(t)x(t)] �= L[A(t)]L[x(t)]; thus the Laplace transform does not offer any advantage
and is not used in studying time-varying systems.

2.3.1 Op-Amp Circuit Implementation

Every linear time-invariant (LTI) state-space equation can be implemented using an operational
amplifier (op-amp) circuit. Figure 2.6 shows two standard op-amp circuit elements. All inputs
are connected, through resistors, to the inverting terminal. Not shown are the grounded
noninverting terminal and power supply. If the feedback branch is a resistor as shown in Fig.
2.6(a), then the output of the element is −(ax1+bx2+cx3). If the feedback branch is a capactor
with capacitance C and RC = 1 as shown in Fig. 2.6(b), and if the output is assigned as x, then
ẋ = −(av1 +bv2 +cv3). We call the first element an adder; the second element, an integrator.
Actually, the adder functions also as multipliers and the integrator functions also as multipliers
and adder. If we use only one input, say, x1, in Fig. 2.6(a), then the output equals −ax1, and
the element can be used as an inverter with gain a. Now we use an example to show that every
LTI state-space equation can be implemented using the two types of elements in Fig. 2.6.

Consider the state equation[
ẋ1(t)

ẋ2(t)

]
=
[

2 −0.3

1 −8

] [
x1(t)

x2(t)

]
+
[−2

0

]
u(t) (2.17)

Figure 2.6 Two op-amp circuit elements.

2.4 Linearization 17

y(t) = [−2 3]

[
x1(t)

x2(t)

]
+ 5u(t) (2.18)

It has dimension 2 and we need two integrators to implement it. We have the freedom in
choosing the output of each integrator as +xi or −xi . Suppose we assign the output of the
left-hand-side (LHS) integrator as x1 and the output of the right-hand-side (RHS) integrator
as −x2 as shown in Fig. 2.7. Then the input of the LHS integrator should be, from the first
equation of (2.17), −ẋ1 = −2x1 + 0.3x2 + 2u and is connected as shown. The input of the
RHS integrator should be ẋ2 = x1 − 8x2 and is connected as shown. If the output of the adder
is chosen as y, then its input should equal −y = 2x1 − 3x2 − 5u, and is connected as shown.
Thus the state equation in (2.17) and (2.18) can be implemented as shown in Fig. 2.7. Note that
there are many ways to implement the same equation. For example, if we assign the outputs
of the two integrators in Fig. 2.7 as x1 and x2, instead of x1 and −x2, then we will obtain a
different implementation.

In actual operational amplifier circuits, the range of signals is limited, usually 1 or 2 volts
below the supplied voltage. If any signal grows outside the range, the circuit will saturate or
burn out and the circuit will not behave as the equation dictates. There is, however, a way to
deal with this problem, as we will discuss in Section 4.3.1.

2.4 Linearization

Most physical systems are nonlinear and time varying. Some of them can be described by the
nonlinear differential equation of the form

Figure 2.7 Op-amp implementation of (2.17) and (2.18).

18 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

ẋ(t) = h(x(t), u(t), t) (2.19)

y(t) = f(x(t), u(t), t)

where h and f are nonlinear functions. The behavior of such equations can be very complicated
and its study is beyond the scope of this text.

Some nonlinear equations, however, can be approximated by linear equations under
certain conditions. Suppose for some input function uo(t) and some initial state, xo(t) is the
solution of (2.19); that is,

ẋo(t) = h(xo(t), uo(t), t) (2.20)

Now suppose the input is perturbed slightly to become uo(t) + ū(t) and the initial state is also
perturbed only slightly. For some nonlinear equations, the corresponding solution may differ
from xo(t) only slightly. In this case, the solution can be expressed as xo(t) + x̄(t) with x̄(t)

small for all t .3 Under this assumption, we can expand (2.19) as

ẋo(t) + ˙̄x(t) = h(xo(t) + x̄(t), uo(t) + ū(t), t)

= h(xo(t), uo(t), t) + ∂h
∂x

x̄ + ∂h
∂u

ū + · · · (2.21)

where, for h = [h1 h2 h3]′, x = [x1 x2 x3]′, and u = [u1 u2]′,

A(t) := ∂h
∂x

:=

 ∂h1/∂x1 ∂h1/∂x2 ∂h1/∂x3

∂h2/∂x1 ∂h2/∂x2 ∂h2/∂x3

∂h3/∂x1 ∂h3/∂x2 ∂h3/∂x3




B(t) := ∂h
∂u

:=

 ∂h1/∂u1 ∂h1/∂u2

∂h2/∂u1 ∂h2/∂u2

∂h3/∂u1 ∂h3/∂u2




They are called Jacobians. Because A and B are computed along the two time functions xo(t)

and uo(t), they are, in general, functions of t . Using (2.20) and neglecting higher powers of x̄
and ū, we can reduce (2.21) to

˙̄x(t) = A(t)x̄(t) + B(t)ū(t)

This is a linear state-space equation. The equation y(t) = f(x(t), u(t), t) can be similarly
linearized. This linearization technique is often used in practice to obtain linear equations.

2.5 Examples

In this section we use examples to illustrate how to develop transfer functions and state-space
equations for physical systems.

Example 2.6 Consider the mechanical system shown in Fig. 2.8. It consists of a block with
mass m connected to a wall through a spring. We consider the applied force u to be the input

3. This is not true in general. For some nonlinear equations, a very small difference in initial states will generate
completely different solutions, yielding the phenomenon of chaos.

2.5 Examples 19

and displacement y from the equilibrium to be the output. The friction between the floor and the
block generally consists of three distinct parts: static friction, Coulomb friction, and viscous
friction as shown in Fig. 2.9. Note that the horizontal coordinate is velocity ẏ = dy/dt . The
friction is clearly not a linear function of the velocity. To simplify analysis, we disregard
the static and Coulomb frictions and consider only the viscous friction. Then the friction
becomes linear and can be expressed as k1ẏ(t), where k1 is the viscous friction coefficient. The
characteristics of the spring are shown in Fig. 2.10; it is not linear. However, if the displacement
is limited to (y1, y2) as shown, then the spring can be considered to be linear and the spring
force equals k2y, where k2 is the spring constant. Thus the mechanical system can be modeled
as a linear system under linearization and simplification.

Figure 2.8 Mechanical system.

Figure 2.9 Mechanical system.(a) Static and Coulomb frictions. (b) Viscous friction.

Figure 2.10 Characteristic of spring.

20 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

We apply Newton’s law to develop an equation to describe the system. The applied force
u must overcome the friction and the spring force. The remainder is used to accelerate the
block. Thus we have

mÿ = u − k1ẏ − k2y (2.22)

where ÿ = d2y(t)/dt2 and ẏ = dy(t)/dt . Applying the Laplace transform and assuming zero
initial conditions, we obtain

ms2ŷ(s) = û(s) − k1sŷ(s) − k2ŷ(s)

which implies

ŷ(s) = 1

ms2 + k1s + k2
û(s)

This is the input–output description of the system. Its transfer function is 1/(ms2 + k1s + k2).
If m = 1, k1 = 3, k2 = 2, then the impulse response of the system is

g(t) = L−1

[
1

s2 + 3s + 2

]
= L−1

[
1

s + 1
− 1

s + 2

]
= e−t − e−2t

and the convolution description of the system is

y(t) =
∫ t

0
g(t − τ)u(τ) dτ =

∫ t

0
(e−(t−τ) − e−2(t−τ))u(τ) dτ

Next we develop a state-space equation to describe the system. Let us select the displace-
ment and velocity of the block as state variables; that is, x1 = y, x2 = ẏ. Then we have, using
(2.22),

ẋ1 = x2 mẋ2 = u − k1x2 − k2x1

They can be expressed in matrix form as[
ẋ1(t)

ẋ2(t)

]
=
[

0 1

−k2/m −k1/m

] [
x1(t)

x2(t)

]
+
[

0

1/m

]
u(t)

y(t) = [1 0]

[
x1(t)

x2(t)

]

This state-space equation describes the system.

Example 2.7 Consider the system shown in Fig. 2.11. It consists of two blocks, with masses
m1 and m2, connected by three springs with spring constants ki , i = 1, 2, 3. To simplify the
discussion, we assume that there is no friction between the blocks and the floor. The applied

Figure 2.11 Spring-mass system.

2.5 Examples 21

force u1 must overcome the spring forces and the remainder is used to accelerate the block,
thus we have

u1 − k1y1 − k2(y1 − y2) = m1ÿ1

or

m1ÿ1 + (k1 + k2)y1 − k2y2 = u1 (2.23)

For the second block, we have

m2ÿ2 − k2y1 + (k1 + k2)y2 = u2 (2.24)

They can be combined as[
m1 0

0 m2

] [
ÿ1

ÿ2

]
+
[

k1 + k2 −k2

−k2 k1 + k2

] [
y1

y2

]
=
[

u1

u2

]

This is a standard equation in studying vibration and is said to be in normal form. See Reference
[18]. Let us define

x1 := y1 x2 := ẏ1 x3 := y2 x4 := ẏ2

Then we can readily obtain




ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0
−(k1 + k2)

m1
0

k2

m1
0

0 0 0 1
k2

m2
0

−(k1 + k2)

m1
0







x1

x2

x3

x4


+




0 0
1

m1
0

0 0

0
1

m2



[

u1

u2

]

y :=
[

y1

y2

]
=
[

1 0 0 0

0 0 1 0

]
x

This two-input two-output state equation describes the system in Fig. 2.11.
To develop its input–output description, we apply the Laplace transform to (2.23) and

(2.24) and assume zero initial conditions to yield

m1s
2ŷ1(s) + (k1 + k2)ŷ1(s) − k2ŷ2(s) = û1(s)

m2s
2ŷ2(s) − k2ŷ1(s) + (k1 + k2)ŷ2(s) = û2(s)

From these two equations, we can readily obtain

[
ŷ1(s)

ŷ2(s)

]
=




m2s
2 + k1 + k2

d(s)

k2

d(s)

k2

d(s)

m1s
2 + k1 + k2

d(s)



[

û1(s)

û2(s)

]

where

d(s) := (m1s
2 + k1 + k2)(m2s

2 + k1 + k2) − k2
2

This is the transfer-matrix description of the system. Thus what we will discuss in this text can
be applied directly to study vibration.

22 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Example 2.8 Consider a cart with an inverted pendulum hinged on top of it as shown in Fig.
2.12. For simplicity, the cart and the pendulum are assumed to move in only one plane, and the
friction, the mass of the stick, and the gust of wind are disregarded. The problem is to maintain
the pendulum at the vertical position. For example, if the inverted pendulum is falling in the
direction shown, the cart moves to the right and exerts a force, through the hinge, to push the
pendulum back to the vertical position. This simple mechanism can be used as a model of a
space vehicle on takeoff.

Let H and V be, respectively, the horizontal and vertical forces exerted by the cart on the
pendulum as shown. The application of Newton’s law to the linear movements yields

M
d2y

dt2
= u − H

H = m
d2

dt2
(y + l sin θ) = mÿ + mlθ̈ cos θ − ml(θ̇)2 sin θ

mg − V = m
d2

dt2
(l cos θ) = ml[−θ̈ sin θ − (θ̇)2 cos θ]

The application of Newton’s law to the rotational movement of the pendulum around the hinge
yields

mgl sin θ = mlθ̈ · l + mÿl cos θ

They are nonlinear equations. Because the design objective is to maintain the pendulum
at the vertical position, it is reasonable to assume θ and θ̇ to be small. Under this assumption,
we can use the approximation sin θ = θ and cos θ = 1. By retaining only the linear terms in θ

and θ̇ or, equivalently, dropping the terms with θ2, (θ̇)2, θ θ̇ , and θ θ̈ , we obtain V = mg and

Mÿ = u − mÿ − mlθ̈

gθ = lθ̈ + ÿ

which imply

Mÿ = u − mgθ (2.25)

Mlθ̈ = (M + m)gθ − u (2.26)

Figure 2.12 Cart with inverted pendulum.

2.5 Examples 23

Using these linearized equations, we now can develop the input–output and state-space
descriptions. Applying the Laplace transform to (2.25) and (2.26) and assuming zero initial
conditions, we obtain

Ms2ŷ(s) = û(s) − mgθ̂(s)

Mls2θ̂ (s) = (M + m)gθ̂(s) − û(s)

From these equations, we can readily compute the transfer function ĝyu(s) from u to y and the
transfer function ĝθu(s) from u to θ as

ĝyu(s) = s2 − g

s2[Ms2 − (M + m)g]

ĝθu(s) = −1

Ms2 − (M + m)g

To develop a state-space equation, we select state variables as x1 = y, x2 = ẏ, x3 = θ ,
and x4 = θ̇ . Then from this selection, (2.25), and (2.26) we can readily obtain


ẋ1

ẋ2

ẋ3

ẋ4


 =




0 1 0 0

0 0 −mg/M 0

0 0 0 1

0 0 (M + m)g/Ml 0






x1

x2

x3

x4


+




0

1/M

0

−1/Ml


 u

y = [1 0 0 0]x (2.27)

This state equation has dimension 4 and describes the system when θ and θ̇ are very small.

Example 2.9 A communication satellite of mass m orbiting around the earth is shown in
Fig. 2.13. The altitude of the satellite is specified by r(t), θ(t), and φ(t) as shown. The orbit
can be controlled by three orthogonal thrusts ur(t), uθ (t), and uφ(t). The state, input, and
output of the system are chosen as

x(t) =




r(t)

ṙ(t)

θ(t)

θ̇ (t)

φ(t)

φ̇(t)




u(t) =

 ur(t)

uθ (t)

uφ(t)


 y(t) =


 r(t)

θ(t)

φ(t)




Then the system can be shown to be described by

ẋ = h(x, u) =




ṙ

r θ̇2 cos2 φ + rφ̇2 − k/r2 + ur/m

θ̇

−2ṙ θ̇/r + 2θ̇ φ̇ sin φ/ cos φ + uθ/mr cos φ

φ̇

−θ̇2 cos φ sin φ − 2ṙ φ̇/r + uφ/mr




(2.28)

24 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Figure 2.13 Satellite in orbit.

One solution, which corresponds to a circular equatorial orbit, is given by

xo(t) = [ro 0 ωot ωo 0 0]′ uo ≡ 0

with r3
oω2

o = k, a known physical constant. Once the satellite reaches the orbit, it will remain
in the orbit as long as there are no disturbances. If the satellite deviates from the orbit, thrusts
must be applied to push it back to the orbit. Define

x(t) = xo(t) + x̄(t) u(t) = uo(t) + ū(t) y(t) = yo + ȳ(t)

If the perturbation is very small, then (2.28) can be linearized as

˙̄x(t) =




0 1 0 0
... 0 0

3ω2
o 0 0 2ωoro

... 0 0

0 0 0 1
... 0 0

0
−2ωo

ro

0 0
... 0 0

· ·
0 0 0 0

... 0 1

0 0 0 0
... −ω2

o 0




x̄(t)

+




0 0
... 0

1

m
0

... 0

0 0
... 0

0
1

mro

... 0

· · · · · · · · · · · ·
0 0

... 0

0 0
...

1

mro




ū(t)

2.5 Examples 25

ȳ(t) =




1 0 0 0
... 0 0

0 0 1 0
... 0 0

· ·
0 0 0 0

... 1 0


 x̄(t) (2.29)

This six-dimensional state equation describes the system. In this equation, A, B, and C happen
to be constant. If the orbit is an elliptic one, then they will be time varying. We note that the
three matrices are all block diagonal. Thus the equation can be decomposed into two uncoupled
parts, one involving r and θ , the other φ. Studying these two parts independently can simplify
analysis and design.

Example 2.10 In chemical plants, it is often necessary to maintain the levels of liquids. A
simplified model of a connection of two tanks is shown in Fig. 2.14. It is assumed that under
normal operation, the inflows and outflows of both tanks all equal Q and their liquid levels
equal H1 and H2. Let u be inflow perturbation of the first tank, which will cause variations
in liquid level x1 and outflow y1 as shown. These variations will cause level variation x2 and
outflow variation y in the second tank. It is assumed that

y1 = x1 − x2

R1
and y = x2

R2

where Ri are the flow resistances and depend on the normal height H1 and H2. They can also
be controlled by the valves. Changes of liquid levels are governed by

A1 dx1 = (u − y1) dt and A2 dx2 = (y1 − y) dt

where Ai are the cross sections of the tanks. From these equations, we can readily obtain

ẋ1 = u

A1
− x1 − x2

A1R1

ẋ2 = x1 − x2

A2R1
− x2

A2R2

Thus the state-space description of the system is given by[
ẋ1

ẋ2

]
=
[−1/A1R1 1/A1R1

1/A2R1 − (1/A2R1 + 1/A2R2)

] [
x1

x2

]
+
[

1/A1

0

]
u

y = [0 1/R2] x

Figure 2.14 Hydraulic
tanks.

26 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Its transfer function can be computed as

ĝ(s) = 1

A1A2R1R2s2 + (A1R1 + A1R2 + A2R2)s + 1

2.5.1 RLC networks

In RLC networks, capacitors and inductors can store energy and are associated with state
variables. If a capacitor voltage is assigned as a state variable x, then its current is Cẋ, where
C is its capacitance. If an inductor current is assigned as a state variable x, then its voltage is
Lẋ, where L is its inductance. Note that resistors are memoryless elements, and their currents
or voltages should not be assigned as state variables. For most simple RLC networks, once
state variables are assigned, their state equations can be developed by applying Kirchhoff’s
current and voltage laws, as the next example illustrates.

Example 2.11 Consider the network shown in Fig. 2.15. We assign the Ci-capacitor voltages
as xi , i = 1, 2 and the inductor current as x3. It is important to specify their polarities. Then
their currents and voltage are, respectively, C1ẋ1, C2ẋ2, and Lẋ3 with the polarities shown.
From the figure, we see that the voltage across the resistor is u − x1 with the polarity shown.
Thus its current is (u − x1)/R. Applying Kirchhoff’s current law at node A yields C2ẋ2 = x3;
at node B it yields

u − x1

R
= C1ẋ1 + C2ẋ2 = C1ẋ1 + x3

Thus we have

ẋ1 = − x1

RC1
− x3

C1
+ u

RC1

ẋ2 = 1

C2
x3

Appling Kirchhoff’s voltage law to the right-hand-side loop yields Lẋ3 = x1 − x2 or

ẋ3 = x1 − x2

L

The output y is given by

y = Lẋ3 = x1 − x2

Figure 2.15 Network.

2.5 Examples 27

They can be combined in matrix form as

ẋ =

−1/RC1 0 −1/C1

0 0 1/C2

1/L −1/L 0


 x +


 1/RC1

0
0


 u

y = [1 − 1 0]x + 0 · u

This three-dimensional state equation describes the network shown in Fig. 2.15.

The procedure used in the preceding example can be employed to develop state equations
to describe simple RLC networks. The procedure is fairly simple: assign state variables and
then use branch characteristics and Kirchhoff’s laws to develop state equations. The procedure
can be stated more systematically by using graph concepts, as we will introduce next. The
procedure and subsequent Example 2.12, however, can be skipped without loss of continuity.

First we introduce briefly the concepts of tree, link, and cutset of a network. We consider
only connected networks. Every capacitor, inductor, resistor, voltage source, and current source
will be considered as a branch. Branches are connected at nodes. Thus a network can be
considered to consist of only branches and nodes. A loop is a connection of branches starting
from one point and coming back to the same point without passing any point twice. The
algebraic sum of all voltages along every loop is zero (Kirchhoff’s voltage law). The set of all
branches connect to a node is called a cutset. More generally, a cutset of a connected network
is any minimal set of branches so that the removal of the set causes the remaining network
to be unconnected. For example, removing all branches connected to a node leaves the node
unconnected to the remaining network. The algebraic sum of all branch currents in every
cutset is zero (Kirchhoff’s current law).

A tree of a network is defined as any connection of branches connecting all the nodes but
containing no loops. A branch is called a tree branch if it is in the tree, a link if it is not. With
respect to a chosen tree, every link has a unique loop, called the fundamental loop, in which
the remaining loop branches are all tree branches. Every tree branch has a unique cutset, called
the fundamental cutset, in which the remaining cutset branches are all links. In other words, a
fundamental loop contains only one link and a fundamental cutset contains only one tree branch.

� Procedure for developing state-space equations4

1. Consider an RLC network. We first choose a normal tree. The branches of the normal
tree are chosen in the order of voltage sources, capacitors, resistors, inductors, and current
sources.

2. Assign the capacitor voltages in the normal tree and the inductor currents in the links as
state variables. Capacitor voltages in the links and inductor currents in the normal tree are
not assigned.

3. Express the voltage and current of every branch in terms of the state variables and,
if necessary, the inputs by applying Kirchhoff’s voltage law to fundamental loops and
Kirchhoff’s current law to fundamental cutsets.

4. The reader may skip this procedure and go directly to Example 2.13.

28 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

4. Apply Kirchhoff’s voltage or current law to the fundamental loop or cutset of every branch
that is assigned as a state variable.

Example 2.12 Consider the network shown in Fig. 2.16. The normal tree is chosen as shown
with heavy lines; it consists of the voltage source, two capacitors, and the 1-
 resistor. The
capacitor voltages in the normal tree and the inductor current in the link will be assigned as
state variables. If the voltage across the 3-F capacitor is assigned as x1, then its current is 3ẋ1.
The voltage across the 1-F capacitor is assigned as x2 and its current is ẋ2. The current through
the 2-H inductor is assigned as x3 and its voltage is 2ẋ3. Because the 2-
 resistor is a link, we
use its fundamental loop to find its voltage as u1 − x1. Thus its current is (u1 − x1)/2. The
1-
 resistor is a tree branch. We use its fundamental cutset to find its current as x3. Thus its
voltage is 1 · x3 = x3. This completes Step 3.

The 3-F capacitor is a tree branch and its fundamental cutset is as shown. The algebraic
sum of the cutset currents is 0 or

u1 − x1

2
− 3ẋ1 + u2 − x3 = 0

which implies

ẋ1 = − 1
6x1 − 1

3x3 + 1
6u1 + 1

3u2

The 1-F capacitor is a tree branch, and from its fundamental cutset we have ẋ2 − x3 = 0 or

ẋ2 = x3

The 2-H inductor is a link. The voltage along its fundamental loop is 2ẋ3 + x3 − x1 + x2 = 0
or

ẋ3 = 1
2x1 − 1

2x2 − 1
2x3

Figure 2.16 Network with two inputs.

2.5 Examples 29

They can be expressed in matrix form as

ẋ =

− 1

6 0 − 1
3

0 0 1
1
2 − 1

2 − 1
2


 x +


 1

6
1
3

0 0
0 0


u (2.30)

If we consider the voltage across the 2-H inductor and the current through the 2-
 resistor as
the outputs, then we have

y1 = 2ẋ3 = x1 − x2 − x3 = [1 − 1 − 1]x

and

y2 = 0.5(u1 − x1) = [−0.5 0 0]x + [0.5 0]u

They can be written in matrix form as

y =
[

1 −1 −1
−0.5 0 0

]
x +

[
0 0

0.5 0

]
u (2.31)

Equations (2.30) and (2.31) are the state-space description of the network.
The transfer matrix of the network can be computed directly from the network or using

the formula in (2.16):

Ĝ(s) = C(sI − A)−1B + D

We will use MATLAB to compute this equation. We type

a=[-1/6 0 -1/3;0 0 1;0.5 -0.5 -0.5];b=[1/6 1/3;0 0;0 0];

c=[1 -1 -1;-0.5 0 0];d=[0 0;0.5 0];

[N1,d1]=ss2tf(a,b,c,d,1)

which yields

N1=

0.0000 0.1667 −0.0000 −0.0000
0.5000 0.2500 0.3333 −0.0000

d1=

1.0000 0.6667 0.7500 0.0833

This is the first column of the transfer matrix. We repeat the computation for the second input.
Thus the transfer matrix of the network is

Ĝ(s) =



0.1667s2

s3 + 0.6667s2 + 0.75s + 0.083

0.3333s2

s3 + 0.6667s2 + 0.75s + 0.0833
0.5s3 + 0.25s2 + 0.3333s

s3 + 0.6667s2 + 0.75s + 0.083

−0.1667s2 − 0.0833s − 0.0833

s3 + 0.6667s2 + 0.75s + 0.0833




30 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Example 2.13 Consider the network shown in Fig. 2.17(a), where T is a tunnel diode with
the characteristics shown in Fig. 2.17(b). Let x1 be the voltage across the capacitor and x2 be
the current through the inductor. Then we have v = x1 and

x2(t) = Cẋ1(t) + i(t) = Cẋ1(t) + h(x1(t))

Lẋ2(t) = E − Rx2(t) − x1(t)

They can be arranged as

ẋ1(t) = −h(x1(t))

C
+ x2(t)

C

ẋ2(t) = −x1(t) − Rx2(t)

L
+ E

L

(2.32)

This set of nonlinear equations describes the network. Now if x1(t) is known to lie only inside
the range (a, b) shown in Fig. 2.17(b), then h(x1(t)) can be approximated by h(x1(t)) =
x1(t)/R1. In this case, the network can be reduced to the one in Fig. 2.17(c) and can be
described by [

ẋ1

ẋ2

]
=
[−1/CR1 1/C

−1/L −R/L

] [
x1

x2

]
+
[

0
1/L

]
E

Figure 2.17 Network with a tunnel diode.

2.6 Discrete-Time Systems 31

This is an LTI state-space equation. Now if x1(t) is known to lie only inside the range (c, d)

shown in Fig. 2.17(b), we may introduce the variables x̄1(t) = x1(t)−vo, and x̄2(t) = x2(t)−io
and approximate h(x1(t)) as io − x̄1(t)/R2. Substituting these into (2.32) yields[˙̄x1

˙̄x2

]
=
[

1/CR2 1/C

−1/L −R/L

] [
x̄1

x̄2

]
+
[

0
1/L

]
Ē

where Ē = E −vo −Rio. This equation is obtained by shifting the operating point from (0, 0)

to (vo, io) and by linearization at (vo, io). Because the two linearized equations are identical
if −R2 is replaced by R1 and Ē by E, we can readily obtain its equivalent network shown in
Fig. 2.17(d). Note that it is not obvious how to obtain the equivalent network from the original
network without first developing the state equation.

2.6 Discrete-Time Systems

This section develops the discrete counterpart of continuous-time systems. Because most
concepts in continuous-time systems can be applied directly to the discrete-time systems,
the discussion will be brief.

The input and output of every discrete-time system will be assumed to have the same
sampling period T and will be denoted by u[k] := u(kT), y[k]:= y(kT), where k is an integer
ranging from −∞ to +∞. A discrete-time system is causal if current output depends on current
and past inputs. The state at time k0, denoted by x[k0], is the information at time instant k0,
which together with u[k], k ≥ k0, determines uniquely the output y[k], k ≥ k0. The entries of
x are called state variables. If the number of state variables is finite, the discrete-time system
is lumped; otherwise, it is distributed. Every continuous-time system involving time delay,
as the ones in Examples 2.1 and 2.3, is a distributed system. In a discrete-time system, if the
time delay is an integer multiple of the sampling period T , then the discrete-time system is a
lumped system.

A discrete-time system is linear if the additivity and homogeneity properties hold. The
response of every linear discrete-time system can be decomposed as

Response = zero-state response + zero-input response

and the zero-state responses satisfy the superposition property. So do the zero-input responses.

Input–output description Let δ[k] be the impulse sequence defined as

δ[k − m] =
{

1 if k = m

0 if k �= m

where both k and m are integers, denoting sampling instants. It is the discrete counterpart of
the impulse δ(t − t1). The impulse δ(t − t1) has zero width and infinite height and cannot be
generated in practice; whereas the impulse sequence δ[k − m] can easily be generated. Let
u[k] be any input sequence. Then it can be expressed as

u[k] =
∞∑

m=−∞
u[m]δ[k − m]

Let g[k, m] be the output at time instant k excited by the impulse sequence applied at time
instant m. Then we have

32 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

δ[k − m] → g[k, m]

δ[k − m]u[m] → g[k, m]u[m] (homogeneity)∑
m

δ[k − m]u[m] →
∑
m

g[k, m]u[m] (additivity)

Thus the output y[k] excited by the input u[k] equals

y[k] =
∞∑

m=−∞
g[k, m]u[m] (2.33)

This is the discrete counterpart of (2.3) and its derivation is considerably simpler. The sequence
g[k, m] is called the impulse response sequence.

If a discrete-time system is causal, no output will appear before an input is applied. Thus
we have

Causal ⇐⇒ g[k, m] = 0, for k < m

If a system is relaxed at k0 and causal, then (2.33) can be reduced to

y[k] =
k∑

m=k0

g[k, m]u[m] (2.34)

as in (2.4).
If a linear discrete-time system is time invariant as well, then the time shifting property

holds. In this case, the initial time instant can always be chosen as k0 = 0 and (2.34) becomes

y[k] =
k∑

m=0

g[k − m]u[m] =
k∑

m=0

g[m]u[k − m] (2.35)

This is the discrete counterpart of (2.8) and is called a discrete convolution.
The z-transform is an important tool in the study of LTI discrete-time systems. Let ŷ(z)

be the z-transform of y[k] defined as

ŷ(z) := Z[y[k]] :=
∞∑

k=0

y[k]z−k (2.36)

We first replace the upper limit of the integration in (2.35) to ∞,5 and then substitute it into
(2.36) to yield

ŷ(z) =
∞∑

k=0

(∞∑
m=0

g[k − m]u[m]

)
z−(k−m)z−m

=
∞∑

m=0

(∞∑
k=0

g[k − m]z−(k−m)

)
u[m]z−m

=
(∞∑

l=0

g[l]z−l

)(∞∑
m=0

u[m]z−m

)
=: ĝ(z)û(z)

5. This is permitted under the causality assumption.

2.6 Discrete-Time Systems 33

where we have interchanged the order of summations, introduced the new variable l = k −m,
and then used the fact that g[l] = 0 for l < 0 to make the inner summation independent of m.
The equation

ŷ(z) = ĝ(z)û(z) (2.37)

is the discrete counterpart of (2.10). The function ĝ(z) is the z-transform of the impulse response
sequence g[k] and is called the discrete transfer function. Both the discrete convolution and
transfer function describe only zero-state responses.

Example 2.14 Consider the unit-sampling-time delay system defined by

y[k] = u[k − 1]

The output equals the input delayed by one sampling period. Its impulse response sequence is
g[k] = δ[k − 1] and its discrete transfer function is

ĝ(z) = Z[δ[k − 1]] = z−1 = 1

z

It is a rational function of z. Note that every continuous-time system involving time delay is a
distributed system. This is not so in discrete-time systems.

Example 2.15 Consider the discrete-time feedback system shown in Fig. 2.18(a). It is the
discrete counterpart of Fig. 2.5(a). If the unit-sampling-time delay element is replaced by its
transfer function z−1, then the block diagram becomes the one in Fig. 2.18(b) and the transfer
function from r to y can be computed as

ĝ(z) = az−1

1 − az−1
= a

z − a

This is a rational function of z and is similar to (2.12). The transfer function can also be
obtained by applying the z-transform to the impulse response sequence of the feedback system.
As in (2.9), the impulse response sequence is

gf [k] = aδ[k − 1] + a2δ[k − 2] + · · · =
∞∑

m=1

amδ[k − m]

The z-transform of δ[k − m] is z−m. Thus the transfer function of the feedback system is

ĝf (z) = Z[gf [k]] = az−1 + a2z−2 + a3z−3 + · · ·

= az−1
∞∑

m=0

(az−1)m = az−1

1 − az−1

which yields the same result.

The discrete transfer functions in the preceding two examples are all rational functions
of z. This may not be so in general. For example, if

g[k] =
{

0 for m ≤ 0
1/k for k = 1, 2, . . .

34 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Figure 2.18 Discrete-time feedback system.

Then we have

ĝ(z) = z−1 + 1
2z−2 + 1

3z−3 + · · · = − ln(1 − z−1)

It is an irrational function of z. Such a system is a distributed system. We study in this text only
lumped discrete-time systems and their discrete transfer functions are all rational functions
of z.

Discrete rational transfer functions can be proper or improper. If a transfer function is
improper such as ĝ(z) = (z2 + 2z − 1)/(z − 0.5), then

ŷ(z)

û(z)
= z2 + 2z − 1

z − 0.5

which implies

y[k + 1] − 0.5y[k] = u[k + 2] + 2u[k + 1] − u[k]

or

y[k + 1] = 0.5y[k] + u[k + 2] + 2u[k + 1] − u[k]

It means that the output at time instant k + 1 depends on the input at time instant k + 2,
a future input. Thus a discrete-time system described by an improper transfer function is
not causal. We study only causal systems. Thus all discrete rational transfer functions will
be proper. We mentioned earlier that we also study only proper rational transfer functions
of s in the continuous-time case. The reason, however, is different. Consider ĝ(s) = s or
y(t) = du(t)/dt . It is a pure differentiator. If we define the differentiation as

y(t) = du(t)

dt
= lim

�→0

u(t + �) − u(t)

�

where � > 0, then the output y(t) depends on future input u(t + �) and the differentiator is
not causal. However, if we define the differentiation as

y(t) = du(t)

dt
= lim

�→0

u(t) − u(t − �)

�

then the output y(t) does not depend on future input and the differentiator is causal. Therefore
in continuous-time systems, it is open to argument whether an improper transfer function
represents a noncausal system. However, improper transfer functions of s will amplify high-

2.6 Discrete-Time Systems 35

frequency noise, which often exists in the real world. Therefore improper transfer functions
are avoided in practice.

State-space equations Every linear lumped discrete-time system can be described by

x[k + 1] = A[k]x[k] + B[k]u[k]

y[k] = C[k]x[k] + D[k]u[k]
(2.38)

where A, B, C, and D are functions of k. If the system is time invariant as well, then (2.38)
becomes

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
(2.39)

where A, B, C, and D are constant matrices. Let x̂(z) be the z-transform of x[k] or

x̂(z) = Z[x[k]] :=
∞∑

k=0

x[k]z−k

Then we have

Z[x[k + 1]] =
∞∑

k=0

x[k + 1]z−k = z

∞∑
k=0

x[k + 1]z−(k+1)

= z

[∞∑
l=1

x[l]z−l + x[0] − x[0]

]
= z(x̂(z) − x[0])

Applying the z-transform to (2.39) yields

zx̂(z) − zx[0] = Ax̂(z) + Bû(z)

ŷ(z) = Cx̂(z) + Dû(z)

which implies

x̂(z) = (zI − A)−1zx[0] + (zI − A)−1Bû(z) (2.40)

ŷ(z) = C(zI − A)−1zx[0] + C(zI − A)−1Bû(z) + Dû(z) (2.41)

They are the discrete counterparts of (2.14) and (2.15). Note that there is an extra z in front of
x[0]. If x[0] = 0, then (2.41) reduces to

ŷ(z) = [C(zI − A)−1B + D]û(z) (2.42)

Comparing this with the MIMO case of (2.37) yields

Ĝ(z) = C(zI − A)−1B + D (2.43)

This is the discrete counterpart of (2.16). If the Laplace transform variable s is replaced by the
z-transform variable z, then the two equations are identical.

36 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Example 2.16 Consider a money market account in a brokerage firm. If the interest rate
depends on the amount of money in the account, it is a nonlinear system. If the interest rate is
the same no matter how much money is in the account, then it is a linear system. The account
is a time-varying system if the interest rate changes with time; a time-invariant system if the
interest rate is fixed. We consider here only the LTI case with interest rate r = 0.015% per day
and compounded daily. The input u[k] is the amount of money deposited into the account on
the kth day and the output y[k] is the total amount of money in the account at the end of the
kth day. If we withdraw money, then u[k] is negative.

If we deposit one dollar on the first day (that is, u[0] = 1) and nothing thereafter
(u[k] = 0, k = 1, 2, . . .), then y[0] = u[0] = 1 and y[1] = 1 + 0.00015 = 1.00015.
Because the money is compounded daily, we have

y[2] = y[1] + y[1] · 0.00015 = y[1] · 1.00015 = (1.00015)2

and, in general,

y[k] = (1.00015)k

Because the input {1, 0, 0, . . .} is an impulse sequence, the output is, by definition, the impulse
response sequence or

g[k] = (1.00015)k

and the input–output description of the account is

y[k] =
k∑

m=0

g[k − m]u[m] =
k∑

m=0

(1.00015)k−mu[m] (2.44)

The discrete transfer function is the z-transform of the impulse response sequence or

ĝ(z) = Z[g[k]] =
∞∑

k=0

(1.00015)kz−k =
∞∑

k=0

(1.00015z−1)k

= 1

1 − 1.00015z−1
= z

z − 1.00015
(2.45)

Whenever we use (2.44) or (2.45), the initial state must be zero, or there is initially no money
in the account.

Next we develop a state-space equation to describe the account. Suppose y[k] is the total
amount of money at the end of the kth day. Then we have

y[k + 1] = y[k] + 0.00015y[k] + u[k + 1] = 1.00015y[k] + u[k + 1] (2.46)

If we define the state variable as x[k] := y[k], then

x[k + 1] = 1.00015x[k] + u[k + 1]

y[k] = x[k]
(2.47)

Because of u[k + 1], (2.47) is not in the standard form of (2.39). Thus we cannot select
x[k] := y[k] as a state variable. Next we select a different state variable as

2.7 Concluding Remarks 37

x[k] := y[k] − u[k]

Substituting y[k + 1] = x[k + 1] + u[k + 1] and y[k] = x[k] + u[k] into (2.46) yields

x[k + 1] = 1.00015x[k] + 1.00015u[k]

y[k] = x[k] + u[k]
(2.48)

This is in the standard form and describes the money market account.

The linearization discussed for the continuous-time case can also be applied to the discrete-
time case with only slight modification. Therefore its discussion will not be repeated.

2.7 Concluding Remarks

We introduced in this chapter the concepts of causality, lumpedness, linearity, and time invari-
ance. Mathematical equations were then developed to describe causal systems, as summarized
in the following.

System type Internal description External description

Distributed, linear y(t) =
∫ t

t0

G(t, τ)u(τ) dτ

Lumped, linear ẋ = A(t)x + B(t)u y(t) =
∫ t

t0

G(t, τ)u(τ) dτ

y = C(t)x + D(t)u

Distributed, linear, y(t) =
∫ t

0
G(t − τ)u(τ) dτ

time-invariant
ŷ(s) = Ĝ(s)û(s), Ĝ(s) irrational

Lumped, linear, ẋ = Ax + Bu y(t) =
∫ t

0
G(t − τ)u(τ) dτ

time-invariant
y = Cx + Du ŷ(s) = Ĝ(s)û(s), Ĝ(s) rational

Distributed systems cannot be described by finite-dimensional state-space equations. External
description describes only zero-state responses; thus whenever we use the description, systems
are implicitly assumed to be relaxed or their initial conditions are assumed to be zero.

We study in this text mainly lumped linear time-invariant systems. For this class of
systems, we use mostly the time-domain description (A, B, C, D) in the internal description
and the frequency-domain (Laplace-domain) description Ĝ(s) in the external description.
Furthermore, we will express every rational transfer matrix as a fraction of two polynomial
matrices, as we will develop in the text. By so doing, all designs in the SISO case can be
extended to the multivariable case.

38 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

The class of lumped linear time-invariant systems constitutes only a very small part of
nonlinear and linear systems. For this small class of systems, we are able to give a complete
treatment of analyses and syntheses. This study will form a foundation for studying more
general systems.

PROBLEMS
2.1 Consider the memoryless systems with characteristics shown in Fig. 2.19, in which u

denotes the input and y the output. Which of them is a linear system? Is it possible to
introduce a new output so that the system in Fig. 2.19(b) is linear?

Figure 2.19

2.2 The impulse response of an ideal lowpass filter is given by

g(t) = 2ω
sin 2ω(t − t0)

2ω(t − t0)

for all t , where ω and t0 are constants. Is the ideal lowpass filter causal? Is it possible to
build the filter in the real world?

2.3 Consider a system whose input u and output y are related by

y(t) = (Pαu)(t) :=
{

u(t) for t ≤ α

0 for t > α

where α is a fixed constant. The system is called a truncation operator, which chops off
the input after time α. Is the system linear? Is it time-invariant? Is it causal?

2.4 The input and output of an initially relaxed system can be denoted by y = Hu, where
H is some mathematical operator. Show that if the system is causal, then

Pαy = PαHu = PαHPαu

where Pα is the truncation operator defined in Problem 2.3. Is it true PαHu = HPαu?

2.5 Consider a system with input u and output y. Three experiments are performed on the
system using the inputs u1(t), u2(t), and u3(t) for t ≥ 0. In each case, the initial state
x(0) at time t = 0 is the same. The corresponding outputs are denoted by y1, y2, and y3.
Which of the following statements are correct if x(0) �= 0?

Problems 39

1. If u3 = u1 + u2, then y3 = y1 + y2.

2. If u3 = 0.5(u1 + u2), then y3 = 0.5(y1 + y2).

3. If u3 = u1 − u2, then y3 = y1 − y2.

Which are correct if x(0) = 0?

2.6 Consider a system whose input and output are related by

y(t) =
{

u2(t)/u(t − 1) if u(t − 1) �= 0
0 if u(t − 1) = 0

for all t . Show that the system satisfies the homogeneity property but not the additivity
property.

2.7 Show that if the additivity property holds, then the homogeneity property holds for all
rational numbers α. Thus if a system has some “continuity” property, then additivity
implies homogeneity.

2.8 Let g(t, τ) = g(t +α, τ +α) for all t , τ , and α. Show that g(t, τ) depends only on t −τ .
[Hint: Define x = t + τ and y = t − τ and show that ∂g(t, τ)/∂x = 0.]

2.9 Consider a system with impulse response as shown in Fig. 2.20(a). What is the zero-state
response excited by the input u(t) shown in Fig. 2.20(b).

Figure 2.20

2.10 Consider a system described by

ÿ + 2ẏ − 3y = u̇ − u

What are the transfer function and the impulse response of the system?

2.11 Let ȳ(t) be the unit-step response of a linear time-invariant system. Show that the impulse
response of the system equals dȳ(t)/dt .

2.12 Consider a two-input and two-output system described by

D11(p)y1(t) + D12(p)y2(t) = N11(p)u1(t) + N12(p)u2(t)

40 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

D21(p)y1(t) + D22(p)y2(t) = N21(p)u1(t) + N22(p)u2(t)

where Nij and Dij are polynomials of p := d/dt . What is the transfer matrix of the
system?

2.13 Consider the feedback systems shown in Fig. 2.5. Show that the unit-step responses of
the positive-feedback system are as shown in Fig. 2.21(a) for a = 1 and in Fig. 2.21(b)
for a = 0.5. Show also that the unit-step responses of the negative-feedback system are
as shown in Figs. 2.21(c) and 2.21(d), respectively, for a = 1 and a = 0.5.

Figure 2.21

2.14 Draw an op-amp circuit diagram for

ẋ =
[−2 4

0 5

]
x +

[
2

−4

]
u

y = [3 10]x − 2u

2.15 Find state equations to describe the pendulum systems in Fig. 2.22. The systems are
useful to model one- or two-link robotic manipulators. If θ , θ1, and θ2 are very small,
can you consider the two systems as linear?

2.16 Consider the simplified model of an aircraft shown in Fig. 2.23. It is assumed that the
aircraft is in an equilibrium state at the pitched angle θ0, elevator angle u0, altitude h0,
and cruising speed v0. It is assumed that small deviations of θ and u from θ0 and u0

generate forces f1 = k1θ and f2 = k2u as shown in the figure. Let m be the mass of
the aircraft, I the moment of inertia about the center of gravity P , bθ̇ the aerodynamic
damping, and h the deviation of the altitude from h0. Find a state equation to describe
the system. Show also that the transfer function from u to h, by neglecting the effect of
I , is

Problems 41

Figure 2.22

Figure 2.23

ĝ(s) = ĥ(s)

û(s)
= k1k2l2 − k2bs

ms2(bs + k1l1)

2.17 The soft landing phase of a lunar module descending on the moon can be modeled as
shown in Fig. 2.24. The thrust generated is assumed to be proportional to ṁ, where m is
the mass of the module. Then the system can be described by mÿ = −kṁ − mg, where
g is the gravity constant on the lunar surface. Define state variables of the system as
x1 = y, x2 = ẏ, x3 = m, and u = ṁ. Find a state-space equation to describe the system.

2.18 Find the transfer functions from u to y1 and from y1 to y of the hydraulic tank system
shown in Fig. 2.25. Does the transfer function from u to y equal the product of the two
transfer functions? Is this also true for the system shown in Fig. 2.14? [Answer: No,
because of the loading problem in the two tanks in Fig. 2.14. The loading problem is an
important issue in developing mathematical equations to describe composite systems.
See Reference [7].]

42 MATHEMATICAL DESCRIPTIONS OF SYSTEMS

Figure 2.24

Figure 2.25

2.19 Find a state equation to describe the network shown in Fig. 2.26. Find also its trans-
fer function.

Figure 2.26

2.20 Find a state equation to describe the network shown in Fig. 2.2. Compute also its transfer
matrix.

2.21 Consider the mechanical system shown in Fig. 2.27. Let I denote the moment of inertia
of the bar and block about the hinge. It is assumed that the angular displacement θ is
very small. An external force u is applied to the bar as shown. Let y be the displacement

Problems 43

of the block, with mass m2, from equilibrium. Find a state-space equation to describe
the system. Find also the transfer function from u to y.

Figure 2.27

Chapter

3
Linear Algebra

3.1 Introduction

This chapter reviews a number of concepts and results in linear algebra that are essential in the
study of this text. The topics are carefully selected, and only those that will be used subsequently
are introduced. Most results are developed intuitively in order for the reader to better grasp
the ideas. They are stated as theorems for easy reference in later chapters. However, no formal
proofs are given.

As we saw in the preceding chapter, all parameters that arise in the real world are real
numbers. Therefore we deal only with real numbers, unless stated otherwise, throughout this
text. Let A, B, C, and D be, respectively, n × m, m × r , l × n, and r × p real matrices. Let ai

be the ith column of A, and bj the j th row of B. Then we have

AB = [a1 a2 · · · am]




b1

b2

...

bm


 = a1b1 + a2b2 + · · · + ambm (3.1)

CA = C [a1 a2 · · · am] = [Ca1 Ca2 · · · Cam] (3.2)

and

BD =




b1

b2

...

bm


D =




b1D
b2D

...

bmD


 (3.3)

44

3.2 Basis, Representation, and Orthonormalization 45

These identities can easily be verified. Note that aibi is an n × r matrix; it is the product of an
n × 1 column vector and a 1 × r row vector. The product biai is not defined unless n = r; it
becomes a scalar if n = r .

3.2 Basis, Representation, and Orthonormalization

Consider an n-dimensional real linear space, denoted by R n. Every vector in R n is an n-tuple
of real numbers such as

x =




x1

x2

...

xn




To save space, we write it as x = [x1 x2 · · · xn]′, where the prime denotes the transpose.
The set of vectors {x1, x2, . . . , xm} in R n is said to be linearly dependent if there exist

real numbers α1, α2, . . . , αm, not all zero, such that

α1x1 + α2x2 + · · · + αmxm = 0 (3.4)

If the only set of αi for which (3.4) holds is α1 = 0, α2 = 0, . . . , αm = 0, then the set of
vectors {x1, x2, . . . , xm} is said to be linearly independent.

If the set of vectors in (3.4) is linearly dependent, then there exists at least one αi , say,
α1, that is different from zero. Then (3.4) implies

x1 = − 1

α1
[α2x2 + α3x3 + · · · + αmxm]

=: β2x2 + β3x3 + · · · + βmxm

where βi = −αi/α1. Such an expression is called a linear combination.
The dimension of a linear space can be defined as the maximum number of linearly

independent vectors in the space. Thus in R n, we can find at most n linearly independent
vectors.

Basis and representation A set of linearly independent vectors in R n is called a basis if
every vector in R n can be expressed as a unique linear combination of the set. In R n, any set
of n linearly independent vectors can be used as a basis. Let {q1, q2, . . . , qn} be such a set.
Then every vector x can be expressed uniquely as

x = α1q1 + α2q2 + · · · + αnqn (3.5)

Define the n × n square matrix

Q := [q1 q2 · · · qn] (3.6)

Then (3.5) can be written as

46 LINEAR ALGEBRA

x = Q




α1

α2

...

αn


 =: Qx̄ (3.7)

We call x̄ = [α1 α2 · · · αn]′ the representation of the vector x with respect to the basis
{q1, q2, . . . , qn}.

We will associate with every R n the following orthonormal basis:

i1 =




1

0

0
...

0

0




, i2 =




0

1

0
...

0

0




, · · · , in−1 =




0

0

0
...

1

0




, in =




0

0

0
...

0

1




(3.8)

With respect to this basis, we have

x :=




x1

x2

...

xn


 = x1i1 + x2i2 + · · · + xnin = In




x1

x2

...

xn




where In is the n×n unit matrix. In other words, the representation of any vector x with respect
to the orthonormal basis in (3.8) equals itself.

Example 3.1 Consider the vector x = [1 3]′ in R 2 as shown in Fig. 3.1, The two vectors
q1 = [3 1]′ and q2 = [2 2]′ are clearly linearly independent and can be used as a basis. If we
draw from x two lines in parallel with q2 and q1, they intersect at −q1 and 2q2 as shown. Thus
the representation of x with respect to {q1, q2} is [−1 2]′. This can also be verified from

x =
[

1

3

]
= [q1 q2]

[−1

2

]
=
[

3 2

1 2

] [−1

2

]

To find the representation of x with respect to the basis {q2, i2}, we draw from x two lines
in parallel with i2 and q2. They intersect at 0.5q2 and 2i2. Thus the representation of x with
respect to {q2, i2} is [0.5 2]′. (Verify.)

Norms of vectors The concept of norm is a generalization of length or magnitude. Any
real-valued function of x, denoted by ||x||, can be defined as a norm if it has the following
properties:

1. ||x|| ≥ 0 for every x and ||x|| = 0 if and only if x = 0.

2. ||αx|| = |α|||x||, for any real α.

3. ||x1 + x2|| ≤ ||x1|| + ||x2|| for every x1 and x2.

3.2 Basis, Representation, and Orthonormalization 47

Figure 3.1 Different representations of
vector x.

The last inequality is called the triangular inequality.
Let x = [x1 x2 · · · xn]′. Then the norm of x can be chosen as any one of the following:

||x||1 :=
n∑

i=1

|xi |

||x||2 := √
x′x =

(
n∑

i=1

|xi |2
)1/2

||x||∞ := maxi |xi |
They are called, respectively, 1-norm, 2- or Euclidean norm, and infinite-norm. The 2-norm
is the length of the vector from the origin. We use exclusively, unless stated otherwise, the
Euclidean norm and the subscript 2 will be dropped.

In MATLAB, the norms just introduced can be obtained by using the functions
norm(x,1), norm(x,2)=norm(x), and norm(x,inf).

Orthonormalization A vector x is said to be normalized if its Euclidean norm is 1 or x′x = 1.
Note that x′x is scalar and xx′ is n × n. Two vectors x1 and x2 are said to be orthogonal if
x′

1x2 = x′
2x1 = 0. A set of vectors xi , i = 1, 2, . . . , m, is said to be orthonormal if

xi
′xj =

{
0 if i �= j

1 if i = j

Given a set of linearly independent vectors e1, e2, . . . , em, we can obtain an orthonormal
set using the procedure that follows:

48 LINEAR ALGEBRA

u1 := e1 q1 := u1/||u1||
u2 := e2 − (q′

1e2)q1 q2 := u2/||u2||
...

um := em −∑m−1
k=1 (q′

kem)qk qm := um/||um||
The first equation normalizes the vector e1 to have norm 1. The vector (q′

1e2)q1 is the projection
of the vector e2 along q1. Its subtraction from e2 yields the vertical part u2. It is then normalized
to 1 as shown in Fig. 3.2. Using this procedure, we can obtain an orthonormal set. This is called
the Schmidt orthonormalization procedure.

Let A = [a1 a2 · · · am] be an n × m matrix with m ≤ n. If all columns of A or
{ai , i = 1, 2, . . . , m} are orthonormal, then

A′A =




a′
1

a′
2

...

a′
m


 [a1 a2 · · · am] =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


 = Im

where Im is the unit matrix of order m. Note that, in general, AA′ �= In. See Problem 3.4.

3.3 Linear Algebraic Equations

Consider the set of linear algebraic equations

Ax = y (3.9)

where A and y are, respectively, m × n and m × 1 real matrices and x is an n × 1 vector. The
matrices A and y are given and x is the unknown to be solved. Thus the set actually consists of
m equations and n unknowns. The number of equations can be larger than, equal to, or smaller
than the number of unknowns.

We discuss the existence condition and general form of solutions of (3.9). The range
space of A is defined as all possible linear combinations of all columns of A. The rank of A is

Figure 3.2 Schmidt orthonormization procedure.

3.3 Linear Algebraic Equations 49

defined as the dimension of the range space or, equivalently, the number of linearly independent
columns in A. A vector x is called a null vector of A if Ax = 0. The null space of A consists
of all its null vectors. The nullity is defined as the maximum number of linearly independent
null vectors of A and is related to the rank by

Nullity (A) = number of columns of A − rank (A) (3.10)

Example 3.2 Consider the matrix

A =

 0 1 1 2

1 2 3 4

2 0 2 0


 =: [a1 a2 a3 a4] (3.11)

where ai denotes the ith column of A. Clearly a1 and a2 are linearly independent. The third
column is the sum of the first two columns or a1 + a2 − a3 = 0. The last column is twice the
second column, or 2a2 − a4 = 0. Thus A has two linearly independent columns and has rank
2. The set {a1, a2} can be used as a basis of the range space of A.

Equation (3.10) implies that the nullity of A is 2. It can readily be verified that the two
vectors

n1 =




1

1

−1

0


 n2 =




0

2

0

−1


 (3.12)

meet the condition Ani = 0. Because the two vectors are linearly independent, they form a
basis of the null space.

The rank of A is defined as the number of linearly independent columns. It also equals
the number of linearly independent rows. Because of this fact, if A is m × n, then

rank(A) ≤ min(m, n)

In MATLAB, the range space, null space, and rank can be obtained by calling the functions
orth, null, and rank. For example, for the matrix in (3.11), we type

a=[0 1 1 2;1 2 3 4;2 0 2 0];
rank(a)

which yields 2. Note that MATLAB computes ranks by using singular-value decomposition
(svd), which will be introduced later. The svd algorithm also yields the range and null spaces
of the matrix. The MATLAB function R=orth(a) yields1

Ans R=

0.3782 −0.3084

0.8877 −0.1468

0.2627 0.9399

(3.13)

1. This is obtained using MATLAB Version 5. Earlier versions may yield different results.

50 LINEAR ALGEBRA

The two columns of R form an orthonormal basis of the range space. To check the orthonor-
mality, we type R’*R, which yields the unity matrix of order 2. The two columns in R are not
obtained from the basis {a1, a2} in (3.11) by using the Schmidt orthonormalization procedure;
they are a by-product of svd. However, the two bases should span the same range space. This
can be verified by typing

rank([a1 a2 R])

which yields 2. This confirms that {a1, a2} span the same space as the two vectors of R. We
mention that the rank of a matrix can be very sensitive to roundoff errors and imprecise data.
For example, if we use the five-digit display of R in (3.13), the rank of [a1 a2 R] is 3. The
rank is 2 if we use the R stored in MATLAB, which uses 16 digits plus exponent.

The null space of (3.11) can be obtained by typing null(a), which yields

Ans N=

0.3434 −0.5802

0.8384 0.3395

−0.3434 0.5802

−0.2475 −0.4598

(3.14)

The two columns are an orthonormal basis of the null space spanned by the two vectors {n1, n2}
in (3.12). All discussion for the range space applies here. That is, rank([n1 n2 N])
yields 3 if we use the five-digit display in (3.14). The rank is 2 if we use the N stored in
MATLAB.

With this background, we are ready to discuss solutions of (3.9). We use ρ to denote the
rank of a matrix.

� Theorem 3.1

1. Given an m × n matrix A and an m × 1 vector y, an n × 1 solution x exists in Ax = y if and only
if y lies in the range space of A or, equivalently,

ρ(A) = ρ ([A y])

where [A y] is an m × (n + 1) matrix with y appended to A as an additional column.

2. Given A, a solution x exists in Ax = y for every y, if and only if A has rank m (full row rank).

The first statement follows directly from the definition of the range space. If A has full
row rank, then the rank condition in (1) is always satisfied for every y. This establishes the
second statement.

� Theorem 3.2 (Parameterization of all solutions)

Given an m×n matrix A and an m×1 vector y, let xp be a solution of Ax = y and let k := n−ρ(A)
be the nullity of A. If A has rank n (full column rank) or k = 0, then the solution xp is unique. If k > 0,
then for every real αi , i = 1, 2, . . . , k, the vector

3.3 Linear Algebraic Equations 51

x = xp + α1n1 + · · · + αknk (3.15)

is a solution of Ax = y, where {n1, . . . , nk} is a basis of the null space of A.

Substituting (3.15) into Ax = y yields

Axp +
k∑

i=1

αiAni = Axp + 0 = y

Thus, for every αi , (3.15) is a solution. Let x̄ be a solution or Ax̄ = y. Subtracting this from
Axp = y yields

A(x̄ − xp) = 0

which implies that x̄ − xp is in the null space. Thus x̄ can be expressed as in (3.15). This
establishes Theorem 3.2.

Example 3.3 Consider the equation

Ax =

 0 1 1 2

1 2 3 4

2 0 2 0


 x =: [a1 a2 a3 a4]x =


−4

−8

0


 = y (3.16)

This y clearly lies in the range space of A and xp = [0 − 4 0 0]′ is a solution. A basis of the
null space of A was shown in (3.12). Thus the general solution of (3.16) can be expressed as

x = xp + α1n1 + α2n2 =




0

−4

0

0


+ α1




1

1

−1

0


+ α2




0

2

0

−1


 (3.17)

for any real α1 and α2.

In application, we will also encounter xA = y, where the m × n matrix A and the 1 × n

vector y are given, and the 1 × m vector x is to be solved. Applying Theorems 3.1 and 3.2 to
the transpose of the equation, we can readily obtain the following result.

� Corollary 3.2

1. Given an m × n matrix A, a solution x exists in xA = y, for any y, if and only if A has full column
rank.

2. Given an m×n matrix A and an 1×n vector y, let xp be a solution of xA = y and let k = m−ρ(A).
If k = 0, the solution xp is unique. If k > 0, then for any αi, i = 1, 2, . . . , k, the vector

x = xp + α1n1 + · · · + αknk

is a solution of xA = y, where niA = 0 and the set {n1, . . . , nk} is linearly independent.

In MATLAB, the solution of Ax = y can be obtained by typing A\y. Note the use of
backslash, which denotes matrix left division. For example, for the equation in (3.16), typing

52 LINEAR ALGEBRA

a=[0 1 1 2;1 2 3 4;2 0 2 0];y=[-4;-8;0];
a\y

yields [0 -4 0 0]’. The solution of xA = y can be obtained by typing y/A. Here we use
slash, which denotes matrix right division.

Determinant and inverse of square matrices The rank of a matrix is defined as the number
of linearly independent columns or rows. It can also be defined using the determinant. The
determinant of a 1 × 1 matrix is defined as itself. For n = 2, 3, . . . , the determinant of n × n

square matrix A = [aij] is defined recursively as, for any chosen j ,

det A =
n∑
i

aij cij (3.18)

where aij denotes the entry at the ith row and j th column of A. Equation (3.18) is called
the Laplace expansion. The number cij is the cofactor corresponding to aij and equals
(−1)i+j det Mij , where Mij is the (n − 1) × (n − 1) submatrix of A by deleting its ith row
and j th column. If A is diagonal or triangular, then det A equals the product of all diagonal
entries.

The determinant of any r × r submatrix of A is called a minor of order r . Then the rank
can be defined as the largest order of all nonzero minors of A. In other words, if A has rank r ,
then there is at least one nonzero minor of order r , and every minor of order larger than r is
zero. A square matrix is said to be nonsingular if its determinant is nonzero. Thus a nonsingular
square matrix has full rank and all its columns (rows) are linearly independent.

The inverse of a nonsingular square matrix A = [aij] is denoted by A−1. The inverse has
the property AA−1 = A−1A = I and can be computed as

A−1 = Adj A
det A

= 1

det A
[cij]′ (3.19)

where cij is the cofactor. If a matrix is singular, its inverse does not exist. If A is 2 × 2, then
we have

A−1 :=
[

a11 a12

a21 a22

]−1

= 1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
(3.20)

Thus the inverse of a 2 × 2 matrix is very simple: interchanging diagonal entries and changing
the sign of off-diagonal entries (without changing position) and dividing the resulting matrix
by the determinant of A. In general, using (3.19) to compute the inverse is complicated. If A is
triangular, it is simpler to compute its inverse by solving AA−1 = I. Note that the inverse of a
triangular matrix is again triangular. The MATLAB function inv computes the inverse of A.

� Theorem 3.3

Consider Ax = y with A square.

1. If A is nonsingular, then the equation has a unique solution for every y and the solution equals A−1y.
In particular, the only solution of Ax = 0 is x = 0.

3.4 Similarity Transformation 53

2. The homogeneous equation Ax = 0 has nonzero solutions if and only if A is singular. The number
of linearly independent solutions equals the nullity of A.

3.4 Similarity Transformation

Consider an n × n matrix A. It maps R n into itself. If we associate with R n the orthonormal
basis {i1, i2, . . . , in} in (3.8), then the ith column of A is the representation of Aii with re-
spect to the orthonormal basis. Now if we select a different set of basis {q1, q2, . . . , qn}, then
the matrix A has a different representation Ā. It turns out that the ith column of Ā is the representation
of Aqi with respect to the basis {q1, q2, . . . , qn}. This is illustrated by the example that follows.

Example 3.4 Consider the matrix

A =

 3 2 −1

−2 1 0

4 3 1


 (3.21)

Let b = [0 0 1]′. Then we have

Ab =

−1

0

1


 , A2b = A(Ab) =


−4

2

−3


 , A3b = A(A2b) =


 −5

10

−13




It can be verified that the following relation holds:

A3b = 17b − 15Ab + 5A2b (3.22)

Because the three vectors b, Ab, and A2b are linearly independent, they can be used as a basis.
We now compute the representation of A with respect to the basis. It is clear that

A(b) = [b Ab A2b]


 0

1

0




A(Ab) = [b Ab A2b]


 0

0

1




A(A2b) = [b Ab A2b]


 17

−15

5




where the last equation is obtained from (3.22). Thus the representation of A with respect to
the basis {b, Ab, A2b} is

Ā =

 0 0 17

1 0 −15

0 1 5


 (3.23)

54 LINEAR ALGEBRA

The preceding discussion can be extended to the general case. Let A be an n×n matrix. If
there exists an n×1 vector b such that the n vectors b, Ab, . . . , An−1b are linearly independent
and if

Anb = β1b + β2Ab + · · · + βnAn−1b

then the representation of A with respect to the basis {b, Ab, . . . , An−1b} is

Ā =




0 0 · · · 0 β1

1 0 · · · 0 β2

0 1 · · · 0 β3

...
...

. . .
...

...

0 0 · · · 0 βn−1

0 0 · · · 1 βn




(3.24)

This matrix is said to be in a companion form.

Consider the equation

Ax = y (3.25)

The square matrix A maps x in R n into y in R n. With respect to the basis {q1, q2, . . . , qn},
the equation becomes

Āx̄ = ȳ (3.26)

where x̄ and ȳ are the representations of x and y with respect to the basis {q1, q2, . . . , qn}.
As discussed in (3.7), they are related by

x = Qx̄ y = Qȳ

with

Q = [q1 q2 · · · qn] (3.27)

an n × n nonsingular matrix. Substituting these into (3.25) yields

AQx̄ = Qȳ or Q−1AQx̄ = ȳ (3.28)

Comparing this with (3.26) yields

Ā = Q−1AQ or A = QĀQ−1 (3.29)

This is called the similarity transformation and A and Ā are said to be similar. We write
(3.29) as

AQ = QĀ

or

A[q1 q2 · · · qn] = [Aq1 Aq2 · · · Aqn] = [q1 q2 · · · qn]Ā

3.5 Diagonal Form and Jordan Form 55

This shows that the ith column of Ā is indeed the representation of Aqi with respect to the
basis {q1, q2, . . . , qn}.

3.5 Diagonal Form and Jordan Form

A square matrix A has different representations with respect to different sets of basis. In this
section, we introduce a set of basis so that the representation will be diagonal or block diagonal.

A real or complex number λ is called an eigenvalue of the n × n real matrix A if there
exists a nonzero vector x such that Ax = λx. Any nonzero vector x satisfying Ax = λx is
called a (right) eigenvector of A associated with eigenvalue λ. In order to find the eigenvalue
of A, we write Ax = λx = λIx as

(A − λI)x = 0 (3.30)

where I is the unit matrix of order n. This is a homogeneous equation. If the matrix (A −λI) is
nonsingular, then the only solution of (3.30) is x = 0 (Theorem 3.3). Thus in order for (3.30)
to have a nonzero solution x, the matrix (A − λI) must be singular or have determinant 0.
We define

�(λ) = det(λI − A)

It is a monic polynomial of degree n with real coefficients and is called the characteristic
polynomial of A. A polynomial is called monic if its leading coefficient is 1. If λ is a root of
the characteristic polynomial, then the determinant of (A − λI) is 0 and (3.30) has at least one
nonzero solution. Thus every root of �(λ) is an eigenvalue of A. Because �(λ) has degree n,
the n × n matrix A has n eigenvalues (not necessarily all distinct).

We mention that the matrices


0 0 0 −α4

1 0 0 −α3

0 1 0 −α2

0 0 1 −α1







−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0




and their transposes


0 1 0 0

0 0 1 0

0 0 0 1

−α4 −α3 −α2 −α1







−α1 1 0 0

−α2 0 1 0

−α3 0 0 1

−α4 0 0 0




all have the following characteristic polynomial:

�(λ) = λ4 + α1λ
3 + α2λ

2 + α3λ + α4

These matrices can easily be formed from the coefficients of �(λ) and are called companion-
form matrices. The companion-form matrices will arise repeatedly later. The matrix in (3.24)
is in such a form.

56 LINEAR ALGEBRA

Eigenvalues of A are all distinct Let λi , i = 1, 2, . . . , n, be the eigenvalues of A and
be all distinct. Let qi be an eigenvector of A associated with λi ; that is, Aqi = λiqi . Then
the set of eigenvectors {q1, q2, . . . , qn} is linearly independent and can be used as a basis.
Let Â be the representation of A with respect to this basis. Then the first column of Â is the
representation of Aq1 = λ1q1 with respect to {q1, q2, . . . , qn}. From

Aq1 = λ1q1 = [q1 q2 · · · qn]




λ1

0

0
...

0




we conclude that the first column of Â is [λ1 0 · · · 0]′. The second column of Â is the
representation of Aq2 = λ2q2 with respect to {q1, q2, . . . , qn}, that is, [0 λ1 0 · · · 0]′.
Proceeding forward, we can establish

Â =




λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
...

...
...

...

0 0 0 · · · λn


 (3.31)

This is a diagonal matrix. Thus we conclude that every matrix with distinct eigenvalues has
a diagonal matrix representation by using its eigenvectors as a basis. Different orderings of
eigenvectors will yield different diagonal matrices for the same A.

If we define

Q = [q1 q2 · · · qn] (3.32)

then the matrix Â equals

Â = Q−1AQ (3.33)

as derived in (3.29). Computing (3.33) by hand is not simple because of the need to compute
the inverse of Q. However, if we know Â, then we can verify (3.33) by checking QÂ = AQ.

Example 3.5 Consider the matrix

A =

 0 0 0

1 0 2

0 1 1




Its characteristic polynomial is

�(λ) = det(λI − A) = det


 λ 0 0

−1 λ −2

0 −1 λ − 1




= λ[λ(λ − 1) − 2] = (λ − 2)(λ + 1)λ

3.5 Diagonal Form and Jordan Form 57

Thus A has eigenvalues 2, −1, and 0. The eignevector associated with λ = 2 is any nonzero
solution of

(A − 2I)q1 =

−2 0 0

1 −2 2

0 1 −1


q1 = 0

Thus q1 = [0 1 1]′ is an eigenvector associated with λ = 2. Note that the eigenvector is not
unique, [0 α α]′ for any nonzero real α can also be chosen as an eigenvector. The eigenvector
associated with λ = −1 is any nonzero solution of

(A − (−1)I)q2 =

 1 0 0

1 1 2

0 1 2


q2 = 0

which yields q2 = [0 − 2 1]′. Similarly, the eigenvector associated with λ = 0 can be
computed as q3 = [2 1 − 1]′. Thus the representation of A with respect to {q1, q2, q3} is

Â =

 2 0 0

0 −1 0

0 0 0


 (3.34)

It is a diagonal matrix with eigenvalues on the diagonal. This matrix can also be obtained by
computing

Â = Q−1AQ

with

Q = [q1 q2 q3] =

 0 0 2

1 −2 1

1 1 −1


 (3.35)

However, it is simpler to verify QÂ = AQ or
 0 0 2

1 −2 1

1 1 −1




 2 0 0

0 −1 0

0 0 0


 =


 0 0 0

1 0 2

0 1 1




 0 0 2

1 −2 1

1 1 −1




The result in this example can easily be obtained using MATLAB. Typing

a=[0 0 0;1 0 2;0 1 1]; [q,d]=eig(a)

yields

q =

 0 0 0.8186

0.7071 0.8944 0.4082

0.7071 −0.4472 −0.4082


 d =


 2 0 0

0 −1 0

0 0 0




whered is the diagonal matrix in (3.34). The matrixq is different from the Q in (3.35); but their
corresponding columns differ only by a constant. This is due to nonuniqueness of eigenvectors
and every column of q is normalized to have norm 1 in MATLAB. If we type eig(a)without
the left-hand-side argument, then MATLAB generates only the three eigenvalues 2, -1, 0.

58 LINEAR ALGEBRA

We mention that eigenvalues in MATLAB are not computed from the characteristic polynomial.
Computing the characteristic polynomial using the Laplace expansion and then computing its
roots are not numerically reliable, especially when there are repeated roots. Eigenvalues are
computed in MATLAB directly from the matrix by using similarity transformations. Once
all eigenvalues are computed, the characteristic polynomial equals

∏
(λ − λi). In MATLAB,

typing r=eig(a);poly(r) yields the characteristic polynomial.

Example 3.6 Consider the matrix

A =

−1 1 1

0 4 −13

0 1 0




Its characteristic polynomial is (λ+1)(λ2−4λ+13). Thus A has eigenvalues −1, 2±3j . Note
that complex conjugate eigenvalues must appear in pairs because A has only real coefficients.
The eigenvectors associated with −1 and 2+3j are, respectively, [1 0 0]′ and [j −3+2j j]′.
The eigenvector associated with λ = 2 − 3j is [−j − 3 − 2j − j]′, the complex conjugate
of the eigenvector associated with λ = 2 + 3j . Thus we have

Q =

 1 j −j

0 −3 + 2j −3 − 2j

0 j j


 and Â =


−1 0 0

0 2 + 3j 0

0 0 2 − 3j


 (3.36)

The MATLAB function [q,d]=eig(a) yields

q =

 1 0.2582j −0.2582j

0 −0.7746 + 0.5164j −0.7746 − 0.5164j

0 0.2582j −0.2582j




and

d =

−1 0 0

0 2 + 3j 0

0 0 2 − 3j




All discussion in the preceding example applies here.

Complex eigenvalues Even though the data we encounter in practice are all real numbers,
complex numbers may arise when we compute eigenvalues and eigenvectors. To deal with this
problem, we must extend real linear spaces into complex linear spaces and permit all scalars
such as αi in (3.4) to assume complex numbers. To see the reason, we consider

Av =
[

1 1 + j

1 − j 2

]
v = 0 (3.37)

If we restrict v to real vectors, then (3.37) has no nonzero solution and the two columns of
A are linearly independent. However, if v is permitted to assume complex numbers, then
v = [−2 1 − j]′ is a nonzero solution of (3.37). Thus the two columns of A are linearly
dependent and A has rank 1. This is the rank obtained in MATLAB. Therefore, whenever
complex eigenvalues arise, we consider complex linear spaces and complex scalars and

3.6 Functions of a Square Matrix 59

transpose is replaced by complex-conjugate transpose. By so doing, all concepts and results
developed for real vectors and matrices can be applied to complex vectors and matrices.
Incidentally, the diagonal matrix with complex eigenvalues in (3.36) can be transformed into
a very useful real matrix as we will discuss in Section 4.3.1.

Eigenvalues of A are not all distinct An eigenvalue with multiplicity 2 or higher is called a
repeated eigenvalue. In contrast, an eigenvalue with multiplicity 1 is called a simple eigenvalue.
If A has only simple eigenvalues, it always has a diagonal-form representation. If A has repeated
eigenvalues, then it may not have a diagonal form representation. However, it has a block-
diagonal and triangular-form representation as we will discuss next.

Consider an n × n matrix A with eigenvalue λ and multiplicity n. In other words, A has
only one distinct eigenvalue. To simplify the discussion, we assume n = 4. Suppose the matrix
(A − λI) has rank n − 1 = 3 or, equivalently, nullity 1; then the equation

(A − λI)q = 0

has only one independent solution. Thus A has only one eigenvector associated with λ. We
need n − 1 = 3 more linearly independent vectors to form a basis for R 4. The three vectors
q2, q3, q4 will be chosen to have the properties (A − λI)2q2 = 0, (A − λI)3q3 = 0, and
(A − λI)4q4 = 0.

A vector v is called a generalized eigenvector of grade n if

(A − λI)nv = 0

and

(A − λI)n−1v �= 0

If n = 1, they reduce to (A −λI)v = 0 and v �= 0 and v is an ordinary eigenvector. For n = 4,
we define

v4 := v

v3 := (A − λI)v4 = (A − λI)v

v2 := (A − λI)v3 = (A − λI)2v

v1 := (A − λI)v2 = (A − λI)3v

They are called a chain of generalized eigenvectors of length n = 4 and have the properties
(A − λI)v1 = 0, (A − λI)2v2 = 0, (A − λI)3v3 = 0, and (A − λI)4v4 = 0. These vectors,
as generated, are automatically linearly independent and can be used as a basis. From these
equations, we can readily obtain

Av1 = λv1

Av2 = v1 + λv2

Av3 = v2 + λv3

Av4 = v3 + λv4

60 LINEAR ALGEBRA

Then the representation of A with respect to the basis {v1, v2, v3, v4} is

J :=




λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ


 (3.38)

We verify this for the first and last columns. The first column of J is the representation of
Av1 = λv1 with respect to {v1, v2, v3, v4}, which is [λ 0 0 0]′. The last column of J is the
representation of Av4 = v3 + λv4 with respect to {v1, v2, v3, v4}, which is [0 0 1 λ]′. This
verifies the representation in (3.38). The matrix J has eigenvalues on the diagonal and 1 on the
superdiagonal. If we reverse the order of the basis, then the 1’s will appear on the subdiagonal.
The matrix is called a Jordan block of order n = 4.

If (A − λI) has rank n − 2 or, equivalently, nullity 2, then the equation

(A − λI)q = 0

has two linearly independent solutions. Thus A has two linearly independent eigenvectors and
we need (n − 2) generalized eigenvectors. In this case, there exist two chains of generalized
eigenvectors {v1, v2, . . . , vk} and {u1, u2, . . . , ul} with k + l = n. If v1 and u1 are linearly
independent, then the set of n vectors {v1, . . . , vk, u1, . . . , ul} is linearly independent and can
be used as a basis. With respect to this basis, the representation of A is a block diagonal matrix
of form

Â = diag{J1, J2}
where J1 and J2 are, respectively, Jordan blocks of order k and l.

Now we discuss a specific example. Consider a 5×5 matrix A with repeated eigenvalue λ1

with multiplicity 4 and simple eigenvalue λ2. Then there exists a nonsingular matrix Q such that

Â = Q−1AQ

assumes one of the following forms

Â1 =




λ1 1 0 0 0

0 λ1 1 0 0

0 0 λ1 1 0

0 0 0 λ1 0

0 0 0 0 λ2


 Â2 =




λ1 1 0 0 0

0 λ1 1 0 0

0 0 λ1 0 0

0 0 0 λ1 0

0 0 0 0 λ2




Â3 =




λ1 1 0 0 0

0 λ1 0 0 0

0 0 λ1 1 0

0 0 0 λ1 0

0 0 0 0 λ2


 Â4 =




λ1 1 0 0 0

0 λ1 0 0 0

0 0 λ1 0 0

0 0 0 λ1 0

0 0 0 0 λ2




Â5 =




λ1 0 0 0 0

0 λ1 0 0 0

0 0 λ1 0 0

0 0 0 λ1 0

0 0 0 0 λ2


 (3.39)

3.6 Functions of a Square Matrix 61

The first matrix occurs when the nullity of (A − λ1I) is 1. If the nullity is 2, then Â has two
Jordan blocks associated with λ1; it may assume the form in Â2 or in Â3. If (A−λ1I) has nullity
3, then Â has three Jordan blocks associated with λ1 as shown in Â4. Certainly, the positions
of the Jordan blocks can be changed by changing the order of the basis. If the nullity is 4, then
Â is a diagonal matrix as shown in Â5. All these matrices are triangular and block diagonal
with Jordan blocks on the diagonal; they are said to be in Jordan form. A diagonal matrix is a
degenerated Jordan form; its Jordan blocks all have order 1. If A can be diagonalized, we can
use [q,d]=eig(a) to generate Q and Â as shown in Examples 3.5 and 3.6. If A cannot be
diagonized, A is said to be defective and [q,d]=eig(a) will yield an incorrect solution. In
this case, we may use the MATLAB function [q,d]=jordan(a). However, jordan will
yield a correct result only if A has integers or ratios of small integers as its entries.

Jordan-form matrices are triangular and block diagonal and can be used to establish
many general properties of matrices. For example, because det(CD) = det C det D and
det Q det Q−1 = det I = 1, from A = QÂQ−1, we have

det A = det Q det Â det Q−1 = det Â

The determinant of Â is the product of all diagonal entries or, equivalently, all eigenvalues of
A. Thus we have

det A = product of all eigenvalues of A

which implies that A is nonsingular if and only if it has no zero eigenvalue.
We discuss a useful property of Jordan blocks to conclude this section. Consider the

Jordan block in (3.38) with order 4. Then we have

(J − λI) =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


 (J − λI)2 =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




(J − λI)3 =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0


 (3.40)

and (J − λI)k = 0 for k ≥ 4. This is called nilpotent.

3.6 Functions of a Square Matrix

This section studies functions of a square matrix. We use Jordan form extensively because
many properties of functions can almost be visualized in terms of Jordan form. We study first
polynomials and then general functions of a square matrix.

Polynomials of a square matrix Let A be a square matrix. If k is a positive integer, we
define

Ak := AA · · · A (k terms)

62 LINEAR ALGEBRA

and A0 = I. Let f (λ) be a polynomial such as f (λ) = λ3 + 2λ2 − 6 or (λ + 2)(4λ − 3). Then
f (A) is defined as

f (A) = A3 + 2A2 − 6I or f (A) = (A + 2I)(4A − 3I)

If A is block diagonal, such as

A =
[

A1 0
0 A2

]

where A1 and A2 are square matrices of any order, then it is straightforward to verify

Ak =
[

Ak
1 0

0 Ak
2

]
and f (A) =

[
f (A1) 0

0 f (A2)

]
(3.41)

Consider the similarity transformation Â = Q−1AQ or A = QÂQ−1. Because

Ak = (QÂQ−1)(QÂQ−1) · · · (QÂQ−1) = QÂ
k
Q−1

we have

f (A) = Qf (Â)Q−1 or f (Â) = Q−1f (A)Q (3.42)

A monic polynomial is a polynomial with 1 as its leading coefficient. The minimal
polynomial of A is defined as the monic polynomial ψ(λ) of least degree such that ψ(A) = 0.
Note that the 0 is a zero matrix of the same order as A. A direct consequence of (3.42) is
that f (A) = 0 if and only if f (Â) = 0. Thus A and Â or, more general, all similar matrices
have the same minimal polynomial. Computing the minimal polynomial directly from A is not
simple (see Problem 3.25); however, if the Jordan-form representation of A is available, the
minimal polynomial can be read out by inspection.

Let λi be an eigenvalue of A with multiplicity ni . That is, the characteristic polynomial
of A is

�(λ) = det(λI − A) =
∏

i

(λ − λi)
ni

Suppose the Jordan form of A is known. Associated with each eigenvalue, there may be one or
more Jordan blocks. The index of λi , denoted by n̄i , is defined as the largest order of all Jordan
blocks associated with λi . Clearly we have n̄i ≤ ni . For example, the multiplicities of λ1 in all
five matrices in (3.39) are 4; their indices are, respectively, 4, 3, 2, 2, and 1. The multiplicities
and indices of λ2 in all five matrices in (3.39) are all 1. Using the indices of all eigenvalues,
the minimal polynomial can be expressed as

ψ(λ) =
∏

i

(λ − λi)
n̄i

with degree n̄ =∑ n̄i ≤∑ ni = n = dimension of A. For example, the minimal polynomials
of the five matrices in (3.39) are

ψ1 = (λ − λ1)
4(λ − λ2) ψ2 = (λ − λ1)

3(λ − λ2)

ψ3 = (λ − λ1)
2(λ − λ2) ψ4 = (λ − λ1)

2(λ − λ2)

ψ5 = (λ − λ1)(λ − λ2)

3.6 Functions of a Square Matrix 63

Their characteristic polynomials, however, all equal

�(λ) = (λ − λ1)
4(λ − λ2)

We see that the minimal polynomial is a factor of the characteristic polynomial and has a degree
less than or equal to the degree of the characteristic polynomial. Clearly, if all eigenvalues of
A are distinct, then the minimal polynomial equals the characteristic polynomial.

Using the nilpotent property in (3.40), we can show that

ψ(A) = 0

and that no polynomial of lesser degree meets the condition. Thus ψ(λ) as defined is the
minimal polynomial.

� Theorem 3.4 (Cayley-Hamilton theorem)

Let

�(λ) = det(λI − A) = λn + α1λ
n−1 + · · · + αn−1λ + αn

be the characteristic polynomial of A. Then

�(A) = An + α1An−1 + · · · + αn−1A + αnI = 0 (3.43)

In words, a matrix satisfies its own characteristic polynomial. Because ni ≥ n̄i , the
characteristic polynomial contains the minimal polynomial as a factor or �(λ) = ψ(λ)h(λ)

for some polynomial h(λ). Because ψ(A) = 0, we have �(A) = ψ(A)h(A) = 0 · h(A) = 0.
This establishes the theorem. The Cayley–Hamilton theorem implies that An can be written as
a linear combination of {I, A, . . . , An−1}. Multiplying (3.43) by A yields

An+1 + α1An + · · · + αn−1A2 + αnA = 0 · A = 0

which implies that An+1 can be written as a linear combination of {A, A2, . . . , An}, which,
in turn, can be written as a linear combination of {I, A, . . . , An−1}. Proceeding forward, we
conclude that, for any polynomial f (λ), no matter how large its degree is, f (A) can always
be expressed as

f (A) = β0I + β1A + · · · + βn−1An−1 (3.44)

for some βi . In other words, every polynomial of an n×n matrix A can be expressed as a linear
combination of {I, A, . . . , An−1}. If the minimal polynomial of A with degree n̄ is available,
then every polynomial of A can be expressed as a linear combination of {I, A, . . . , An̄−1}. This
is a better result. However, because n̄ may not be available, we discuss in the following only
(3.44) with the understanding that all discussion applies to n̄.

One way to compute (3.44) is to use long division to express f (λ) as

f (λ) = q(λ)�(λ) + h(λ) (3.45)

where q(λ) is the quotient and h(λ) is the remainder with degree less than n. Then we have

f (A) = q(A)�(A) + h(A) = q(A)0 + h(A) = h(A)

64 LINEAR ALGEBRA

Long division is not convenient to carry out if the degree of f (λ) is much larger than the degree
of �(λ). In this case, we may solve h(λ) directly from (3.45). Let

h(λ) := β0 + β1λ + · · · + βn−1λ
n−1

where the n unknowns βi are to be solved. If all n eigenvalues of A are distinct, these βi can
be solved from the n equations

f (λi) = q(λi)�(λi) + h(λi) = h(λi)

for i = 1, 2, . . . , n. If A has repeated eigenvalues, then (3.45) must be differentiated to yield
additional equations. This is stated as a theorem.

� Theorem 3.5

We are given f (λ) and an n × n matrix A with characteristic polynomial

�(λ) =
m∏

i=1

(λ − λi)
ni

where n =∑m
i=1 ni . Define

h(λ) := β0 + β1λ + · · · + βn−1λ
n−1

It is a polynomial of degree n − 1 with n unknown coefficients. These n unknowns are to be solved
from the following set of n equations:

f (l)(λi) = h(l)(λi) for l = 0, 1, . . . , ni − 1 and i = 1, 2, . . . , m

where

f (l)(λi) := d lf (λ)

dλl

∣∣∣∣
λ=λi

and h(l)(λi) is similarly defined. Then we have

f (A) = h(A)

and h(λ) is said to equal f (λ) on the spectrum of A.

Example 3.7 Compute A100 with

A =
[

0 1

−1 −2

]

In other words, given f (λ) = λ100, compute f (A). The characteristic polynomial of A is
�(λ) = λ2 + 2λ + 1 = (λ + 1)2. Let h(λ) = β0 + β1λ. On the spectrum of A, we have

f (−1) = h(−1) : (−1)100 = β0 − β1

f ′(−1) = h′(−1) : 100 · (−1)99 = β1

Thus we have β1 = −100, β0 = 1 + β1 = −99, h(λ) = −99 − 100λ, and

3.6 Functions of a Square Matrix 65

A100 = β0I + β1A = −99I − 100A

= −99

[
1 0

0 1

]
− 100

[
0 1

−1 −2

]
=
[−99 −100

100 101

]

Clearly A100 can also be obtained by multiplying A 100 times. However, it is simpler to use
Theorem 3.5.

Functions of a square matrix Let f (λ) be any function, not necessarily a polynomial. One
way to define f (A) is to use Theorem 3.5. Let h(λ) be a polynomial of degree n − 1, where n

is the order of A. We solve the coefficients of h(λ) by equating f (λ) = h(λ) on the spectrum
of A. Then f (A) is defined as h(A).

Example 3.8 Let

A1 =

 0 0 −2

0 1 0

1 0 3




Compute eA1t . Or, equivalently, if f (λ) = eλt , what is f (A1)?
The characteristic polynomial of A1 is (λ − 1)2(λ − 2). Let h(λ) = β0 + β1λ + β2λ

2.
Then

f (1) = h(1) : et = β0 + β1 + β2

f ′(1) = h′(1) : tet = β1 + 2β2

f (2) = h(2) : e2t = β0 + 2β1 + 4β2

Note that, in the second equation, the differentiation is with respect to λ, not t . Solving these
equations yields β0 = −2tet + e2t , β1 = 3tet + 2et − 2e2t , and β2 = e2t − et − tet . Thus we
have

eA1t = h(A1) = (−2tet + e2t)I + (3tet + 2et − 2e2t)A1

+ (e2t − et − tet)A2
1 =


 2et − e2t 0 2et − 2e2t

0 et 0

e2t − et 0 2e2t − et




Example 3.9 Let

A2 =

 0 2 −2

0 1 0

1 −1 3




Compute eA2t . The characteristic polynomial of A2 is (λ − 1)2(λ − 2), which is the same as
for A1. Hence we have the same h(λ) as in Example 3.8. Consequently, we have

eA2t = h(A2) =

 2et − e2t 2tet 2et − 2e2t

0 et 0

e2t − et −tet 2e2t − et




66 LINEAR ALGEBRA

Example 3.10 Consider the Jordan block of order 4:

Â =




λ1 1 0 0

0 λ1 1 0

0 0 λ1 1

0 0 0 λ1


 (3.46)

Its characteristic polynomial is (λ−λ1)
4. Although we can select h(λ) as β0+β1λ+β2λ+β3λ

3,
it is computationally simpler to select h(λ) as

h(λ) = β0 + β1(λ − λ1) + β2(λ − λ1)
2 + β3(λ − λ1)

3

This selection is permitted because h(λ) has degree (n − 1) = 3 and n = 4 independent
unknowns. The condition f (λ) = h(λ) on the spectrum of Â yields immediately

β0 = f (λ1), β1 = f ′(λ1), β2 = f ′′(λ1)

2!
, β3 = f (3)(λ1)

3!

Thus we have

f (Â) = f (λ1)I + f ′(λ1)

1!
(Â − λ1I) + f ′′(λ1)

2!
(Â − λ1I)2 + f (3)(λ1)

3!
(Â − λ1I)3

Using the special forms of (Â − λ1I)k as discussed in (3.40), we can readily obtain

f (Â) =




f (λ1) f ′(λ1)/1! f ′′(λ1)/2! f (3)(λ1)/3!

0 f (λ1) f ′(λ1)/1! f ′′(λ1)/2!

0 0 f (λ1) f ′(λ1)/1!

0 0 0 f (λ1)


 (3.47)

If f (λ) = eλt , then

eÂt =




eλ1t teλ1t t2eλ1t /2! t3eλ1t /3!

0 eλ1t teλ1t t2eλ1t /2!

0 0 eλ1t teλ1t

0 0 0 eλ1t


 (3.48)

Because functions of A are defined through polynomials of A, Equations (3.41) and (3.42)
are applicable to functions.

Example 3.11 Consider

A =




λ1 1 0 0 0

0 λ1 1 0 0

0 0 λ1 0 0

0 0 0 λ2 1

0 0 0 0 λ2




3.6 Functions of a Square Matrix 67

It is block diagonal and contains two Jordan blocks. If f (λ) = eλt , then (3.41) and (3.48)
imply

eAt =




eλ1t teλ1t t2eλ1t /2! 0 0

0 eλ1t teλ1t 0 0

0 0 eλ1t 0 0

0 0 0 eλ2t teλ2t

0 0 0 0 eλ2t




If f (λ) = (s − λ)−1, then (3.41) and (3.47) imply

(sI − A)−1 =




1

(s − λ1)

1

(s − λ1)2

1

(s − λ1)3
0 0

0
1

(s − λ1)

1

(s − λ1)2
0 0

0 0
1

(s − λ1)
0 0

0 0 0
1

(s − λ2)

1

(s − λ2)2

0 0 0 0
1

(s − λ2)




(3.49)

Using power series The function of A was defined using a polynomial of finite degree. We
now give an alternative definition by using an infinite power series. Suppose f (λ) can be
expressed as the power series

f (λ) =
∞∑
i=0

βiλ
i

with the radius of convergence ρ. If all eigenvalues of A have magnitudes less than ρ, then
f (A) can be defined as

f (A) =
∞∑
i=0

βiAi (3.50)

Instead of proving the equivalence of this definition and the definition based on Theorem 3.5,
we use (3.50) to derive (3.47).

Example 3.12 Consider the Jordan-form matrix Â in (3.46). Let

f (λ) = f (λ1) + f ′(λ1)(λ − λ1) + f ′′(λ1)

2!
(λ − λ1)

2 + · · ·
then

f (Â) = f (λ1)I + f ′(λ1)(Â − λ1I) + · · · + f (n−1)(λ1)

(n − 1)!
(Â − λ1I)n−1 + · · ·

68 LINEAR ALGEBRA

Because (Â − λ1I)k = 0 for k ≥ n = 4 as discussed in (3.40), the infinite series reduces
immediately to (3.47). Thus the two definitions lead to the same function of a matrix.

The most important function of A is the exponential function eAt . Because the Taylor
series

eλt = 1 + λt + λ2t2

2!
+ · · · + λntn

n!
+ · · ·

converges for all finite λ and t , we have

eAt = I + tA + t2

2!
A2 + · · · =

∞∑
k=0

1

k!
tkAk (3.51)

This series involves only multiplications and additions and may converge rapidly; there-
fore it is suitable for computer computation. We list in the following the program in MATLAB
that computes (3.51) for t = 1:

Function E=expm2(A)
E=zeros(size(A));
F=eye(size(A));
k=1;
while norm(E+F-E,1)>0

E=E+F;
F=A∗F/k;
k=k+1;

end

In the program, E denotes the partial sum and F is the next term to be added to E. The first line
defines the function. The next two lines initialize E and F. Let ck denote the kth term of (3.51)
with t = 1. Then we have ck+1 = (A/k)ck for k = 1, 2, Thus we have F = A ∗ F/k. The
computation stops if the 1-norm of E + F − E, denoted by norm(E + F − E, 1), is rounded
to 0 in computers. Because the algorithm compares F and E, not F and 0, the algorithm uses
norm(E + F − E, 1) instead of norm(F,1). Note that norm(a,1) is the 1-norm discussed in
Section 3.2 and will be discussed again in Section 3.9. We see that the series can indeed be
programmed easily. To improve the computed result, the techniques of scaling and squaring can
be used. In MATLAB, the functionexpm2uses (3.51). The functionexpmorexpm1, however,
uses the so-called Padé approximation. It yields comparable results asexpm2 but requires only
about half the computing time. Thus expm is preferred to expm2. The function expm3 uses
Jordan form, but it will yield an incorrect solution if a matrix is not diagonalizable. If a closed-
form solution of eAt is needed, we must use Theorem 3.5 or Jordan form to compute eAt .

We derive some important properties of eAt to conclude this section. Using (3.51), we
can readily verify the next two equalities

e0 = I (3.52)

eA(t1+t2) = eAt1eAt2 (3.53)

[eAt]
−1 = e−At (3.54)

3.6 Functions of a Square Matrix 69

To show (3.54), we set t2 = −t1. Then (3.53) and (3.52) imply

eAt1e−At1 = eA·0 = e0 = I

which implies (3.54). Thus the inverse of eAt can be obtained by simply changing the sign of
t . Differentiating term by term of (3.51) yields

d

dt
eAt =

∞∑
k=1

1

(k − 1)!
tk−1Ak

= A

(∞∑
k=0

1

k!
tkAk

)
=
(∞∑

k=0

1

k!
tkAk

)
A

Thus we have

d

dt
eAt = AeAt = eAtA (3.55)

This is an important equation. We mention that

e(A+B)t �= eAt eBt (3.56)

The equality holds only if A and B commute or AB = BA. This can be verified by direct
substitution of (3.51).

The Laplace transform of a function f (t) is defined as

f̂ (s) := L[f (t)] =
∫ ∞

0
f (t)e−st dt

It can be shown that

L
[

tk

k!

]
= s−(k+1)

Taking the Laplace transform of (3.51) yields

L[eAt] =
∞∑

k=0

s−(k+1)Ak = s−1
∞∑

k=0

(s−1A)k

Because the infinite series
∞∑

k=0

(s−1λ)k = 1 + s−1λ + s−2λ2 + · · · = (1 − s−1λ)−1

converges for |s−1λ| < 1, we have

s−1
∞∑

k=0

(s−1A)k = s−1I + s−2A + s−3A2 + · · ·

= s−1(I − s−1A)−1 = [s(I − s−1A)
]−1 = (sI − A)−1 (3.57)

and

70 LINEAR ALGEBRA

L[eAt] = (sI − A)−1 (3.58)

Although in the derivation of (3.57) we require s to be sufficiently large so that all eigenvalues
of s−1A have magnitudes less than 1, Equation (3.58) actually holds for all s except at the
eigenvalues of A. Equation (3.58) can also be established from (3.55). Because L[df (t)/dt] =
sL[f (t)] − f (0), applying the Laplace transform to (3.55) yields

sL[eAt] − e0 = AL[eAt]

or

(sI − A)L[eAt] = e0 = I

which implies (3.58).

3.7 Lyapunov Equation

Consider the equation

AM + MB = C (3.59)

where A and B are, respectively, n × n and m × m constant matrices. In order for the equation
to be meaningful, the matrices M and C must be of order n × m. The equation is called the
Lyapunov equation.

The equation can be written as a set of standard linear algebraic equations. To see this,
we assume n = 3 and m = 2 and write (3.59) explicitly as

 a11 a12 a13

a21 a22 a23

a31 a32 a33




m11 m12

m21 m22

m31 m32


+


m11 m12

m21 m22

m31 m32


[b11 b12

b21 b22

]

=

 c11 c12

c21 c22

c31 c32




Multiplying them out and then equating the corresponding entries on both sides of the equality,
we obtain 



a11 + b11 a12 a13 b21 0 0

a21 a22 + b11 a23 0 b21 0

a31 a32 a33 + b11 0 0 b21

b12 0 0 a11 + b22 a12 a13

0 b12 0 a21 a22 + b22 a23

0 0 b12 a31 a32 a33 + b22




3.8 Some Useful Formulas 71

×




m11

m21

m31

m12

m22

m32




=




c11

c21

c31

c12

c22

c32




(3.60)

This is indeed a standard linear algebraic equation. The matrix on the preceding page is a
square matrix of order n × m = 3 × 2 = 6.

Let us define A(M) := AM + MB. Then the Lyapunov equation can be written as
A(M) = C. It maps an nm-dimensional linear space into itself. A scalar η is called an
eigenvalue of A if there exists a nonzero M such that

A(M) = ηM

Because A can be considered as a square matrix of order nm, it has nm eigenvalues ηk , for
k = 1, 2, . . . , nm. It turns out

ηk = λi + µj for i = 1, 2, . . . , n; j = 1, 2, . . . , m

where λi , i = 1, 2, . . . , n, and µj , j = 1, 2, . . . , m, are, respectively, the eigenvalues of
A and B. In other words, the eigenvalues of A are all possible sums of the eigenvalues of A
and B.

We show intuitively why this is the case. Let u be an n×1 right eigenvector of A associated
with λi ; that is, Au = λiu. Let v be a 1 × m left eigenvector of B associated with µj ; that is,
vB = vµj . Applying A to the n × m matrix uv yields

A(uv) = Auv + uvB = λiuv + uvµj = (λi + µj)uv

Because both u and v are nonzero, so is the matrix uv. Thus (λi + µj) is an eigenvalue of A .
The determinant of a square matrix is the product of all its eigenvalues. Thus a matrix

is nonsingular if and only if it has no zero eigenvalue. If there are no i and j such that
λi + µj = 0, then the square matrix in (3.60) is nonsingular and, for every C, there exists a
unique M satisfying the equation. In this case, the Lyapunov equation is said to be nonsingular.
If λi + µj = 0 for some i and j , then for a given C, solutions may or may not exist. If C lies
in the range space of A , then solutions exist and are not unique. See Problem 3.32.

The MATLAB function m=lyap(a,b,-c) computes the solution of the Lyapunov
equation in (3.59).

3.8 Some Useful Formulas

This section discusses some formulas that will be needed later. Let A and B be m × n and
n × p constant matrices. Then we have

ρ(AB) ≤ min(ρ(A), ρ(B)) (3.61)

where ρ denotes the rank. This can be argued as follows. Let ρ(B) = α. Then B has α

linearly independent rows. In AB, A operates on the rows of B. Thus the rows of AB are

72 LINEAR ALGEBRA

linear combinations of the rows of B. Thus AB has at most α linearly independent rows. In
AB, B operates on the columns of A. Thus if A has β linearly independent columns, then
AB has at most β linearly independent columns. This establishes (3.61). Consequently, if
A = B1B2B3 · · ·, then the rank of A is equal to or smaller than the smallest rank of Bi .

Let A be m × n and let C and D be any n × n and m × m nonsingular matrices. Then we
have

ρ(AC) = ρ(A) = ρ(DA) (3.62)

In words, the rank of a matrix will not change after pre- or postmultiplying by a nonsingular
matrix. To show (3.62), we define

P := AC (3.63)

Because ρ(A) ≤ min(m, n) and ρ(C) = n, we have ρ(A) ≤ ρ(C). Thus (3.61) implies

ρ(P) ≤ min(ρ(A), ρ(C)) ≤ ρ(A)

Next we write (3.63) as A = PC−1. Using the same argument, we have ρ(A) ≤ ρ(P). Thus we
conclude ρ(P) = ρ(A). A consequence of (3.62) is that the rank of a matrix will not change
by elementary operations. Elementary operations are (1) multiplying a row or a column by a
nonzero number, (2) interchanging two rows or two columns, and (3) adding the product of
one row (column) and a number to another row (column). These operations are the same as
multiplying nonsingular matrices. See Reference [6, p. 542].

Let A be m × n and B be n × m. Then we have

det(Im + AB) = det(In + BA) (3.64)

where Im is the unit matrix of order m. To show (3.64), let us define

N =
[

Im A
0 In

]
Q =

[
Im 0
−B In

]
P =

[
Im −A
B In

]

We compute

NP =
[

Im + AB 0
B In

]

and

QP =
[

Im −A
0 In + BA

]

Because N and Q are block triangular, their determinants equal the products of the determinant
of their block-diagonal matrices or

det N = det Im · det In = 1 = det Q

Likewise, we have

det(NP) = det(Im + AB) det(QP) = det(In + BA)

Because

3.9 Quadratic Form and Positive Definiteness 73

det(NP) = det N det P = det P

and

det(QP) = det Q det P = det P

we conclude det(Im + AB) = det(In + BA).
In N, Q, and P, if In, Im, and B are replaced, respectively, by

√
sIn,

√
sIm, and −B, then

we can readily obtain

sn det(sIm − AB) = sm det(sIn − BA) (3.65)

which implies, for n = m or for n × n square matrices A and B,

det(sIn − AB) = det(sIn − BA) (3.66)

They are useful formulas.

3.9 Quadratic Form and Positive Definiteness

An n×n real matrix M is said to be symmetric if its transpose equals itself. The scalar function
x′Mx, where x is an n × 1 real vector and M′ = M, is called a quadratic form. We show that
all eigenvalues of symmetric M are real.

The eigenvalues and eigenvectors of real matrices can be complex as shown in Example
3.6. Therefore we must allow x to assume complex numbers for the time being and consider the
scalar function x∗Mx, where x∗ is the complex conjugate transpose of x. Taking the complex
conjugate transpose of x∗Mx yields

(x∗Mx)∗ = x∗M∗x = x∗M′x = x∗Mx

where we have used the fact that the complex conjugate transpose of a real M reduces to
simply the transpose. Thus x∗Mx is real for any complex x. This assertion is not true if M
is not symmetric. Let λ be an eigenvalue of M and v be its eigenvector; that is, Mv = λv.
Because

v∗Mv = v∗λv = λ(v∗v)

and because both v∗Mv and v∗v are real, the eigenvalue λ must be real. This shows that all
eigenvalues of symmetric M are real. After establishing this fact, we can return our study to
exclusively real vector x.

We claim that every symmetric matrix can be diagonalized using a similarity transfor-
mation even it has repeated eigenvalue λ. To show this, we show that there is no generalized
eigenvector of grade 2 or higher. Suppose x is a generalized eigenvector of grade 2 or

(M − λI)2x = 0 (3.67)

(M − λI)x �= 0 (3.68)

Consider

74 LINEAR ALGEBRA

[(M − λI)x]′(M − λI)x = x′(M′ − λI′)(M − λI)x = x′(M − λI)2x

which is nonzero according to (3.68) but is zero according to (3.67). This is a contradiction.
Therefore the Jordan form of M has no Jordan block of order 2. Similarly, we can show that
the Jordan form of M has no Jordan block of order 3 or higher. Thus we conclude that there
exists a Q that consists of all linearly independent eigenvectors of M such that

M = QDQ−1 (3.69)

where D is a diagonal matrix with real eigenvalues of M on the diagonal.
Next we show that Q in (3.69) can be selected as an orthogonal matrix, that is, to have

the property Q−1 = Q'. We first show that eigenvectors associated with different eigenvalues
are orthogonal. Indeed, let Mq1 = λ1q1 and Mq2 = λ2q2. Then we have

q′
2Mq1 = λ1q′

2q1 q′
1Mq2 = λ2q′

1q2

Because [q′
2Mq1]′ = q′

1Mq2 and [q′
2q1]′ = q′

1q2, subtracting the preceding two equations
yields (λ1 −λ2)q′

1q2 = 0. If λ1 �= λ2, then q′
1q2 = 0; thus q1 and q2 are orthogonal. Using the

Schmidt orthonormalization procedure, we can orthonormalize all eigenvectors in Q. Thus we
have Q′Q = I which implies Q−1 = Q′. This is stated as a theorem.

� Theorem 3.6

For every real symmetric matrix M, there exists an orthogonal matrix Q such that

M = QDQ′ or D = Q′MQ

where D is a diagonal matrix with the eigenvalues of M, which are all real, on the diagonal.

A symmetric matrix M is said to be positive definite, denoted by M > 0, if x′Mx > 0 for
every nonzero x. It is positive semidefinite, denoted by M ≥ 0, if x′Mx ≥ 0 for every nonzero
x. If M > 0, then x′Mx = 0 if and only if x = 0. If M ≥ 0 but not M > 0, then there exists a
nonzero x such that x′Mx = 0. This property will be used repeatedly later.

� Theorem 3.7

A symmetric n × n matrix M is positive definite (positive semidefinite) if and only if any one of the
following conditions holds.

1. Every eigenvalue of M is positive (zero or positive).

2. All the leading principal minors of M are positive (all the principal minors of M are zero or positive).

3. There exists an n × n nonsingular matrix N (an n × n singular matrix N or an m × n matrix N with
m < n) such that M = N′N.

Condition (1) can readily be proved by using Theorem 3.6. Next we consider Conditon (3). If
M = N′N, then

x′Mx = x′N′Nx = (Nx)′(Nx) = ||Nx||22 ≥ 0

3.9 Quadratic Form and Positive Definiteness 75

for any x. If N is nonsingular, the only x to make Nx = 0 is x = 0. Thus M is positive definite. If N
is singular, there exists a nonzero x to make Nx = 0. Thus M is positive semidefinite. For a proof of
Condition (2), see Reference [10].

We use an example to illustrate the principal minors and leading principal minors. Consider

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33




Its principal minors are m11, m22, m33,

det

[
m11 m12

m21 m22

]
, det

[
m11 m13

m31 m33

]
, det

[
m22 m23

m32 m33

]

and det M. Thus the principal minors are the determinants of all submatrices of M whose diagonals
coincide with the diagonal of M. The leading principal minors of M are

m11, det

[
m11 m12

m21 m22

]
, and det M

Thus the leading principal minors of M are the determinants of the submatrices of M obtained by deleting
the last k columns and last k rows for k = 2, 1, 0.

� Theorem 3.8

1. An m × n matrix H, with m ≥ n, has rank n, if and only if the n × n matrix H′H has rank n or
det(H′H) �= 0.

2. An m × n matrix H, with m ≤ n, has rank m, if and only if the m × m matrix HH′ has rank m or
det(HH′) �= 0.

The symmetric matrix H′H is always positive semidefinite. It becomes positive definite if H′H is
nonsingular. We give a proof of this theorem. The argument in the proof will be used to establish the
main results in Chapter 6; therefore the proof is spelled out in detail.

Proof: Necessity: The condition ρ(H′H) = n implies ρ(H) = n. We show this by
contradiction. Suppose ρ(H′H) = n but ρ(H) < n. Then there exists a nonzero vector
v such that Hv = 0, which implies H′Hv = 0. This contradicts ρ(H′H) = n. Thus
ρ(H′H) = n implies ρ(H) = n.

Sufficiency: The condition ρ(H) = n implies ρ(H′H) = n. Suppose not, or
ρ(H′H) < n; then there exists a nonzero vector v such that H′Hv = 0, which implies
v′H′Hv = 0 or

0 = v′H′Hv = (Hv)′(Hv) = ||Hv||22
Thus we have Hv = 0. This contradicts the hypotheses that v �= 0 and ρ(H) = n. Thus
ρ(H) = implies ρ(H′H) = n. This establishes the first part of Theorem 3.8. The second
part can be established similarly. Q.E.D.

We discuss the relationship between the eigenvalues of H′H and those of HH′. Because both H′H
and HH′ are symmetric and positive semidefinite, their eigenvalues are real and nonnegative (zero or

76 LINEAR ALGEBRA

positive). If H is m × n, then H′H has n eigenvalues and HH′ has m eigenvalues. Let A = H and
B = H′. Then (3.65) becomes

det(sIm − HH′) = sm−n det(sIn − H′H) (3.70)

This implies that the characteristic polynomials of HH′ and H′H differ only by sm−n. Thus we
conclude that HH′ and H′H have the same nonzero eigenvalues but may have different numbers of
zero eigenvalues. Furthermore, they have at most n̄ := min(m, n) number of nonzero eigenvalues.

3.10 Singular-Value Decomposition

Let H be an m × n real matrix. Define M := H′H. Clearly M is n × n, symmetric, and semidefinite.
Thus all eigenvalues of M are real and nonnegative (zero or positive). Let r be the number of its positive
eigenvalues. Then the eigenvalues of M = H′H can be arranged as

λ2
1 ≥ λ2

2 ≥ · · · λ2
r > 0 = λr+1 = · · · = λn

Let n̄ := min(m, n). Then the set

λ1 ≥ λ2 ≥ · · · λr > 0 = λr+1 = · · · = λn̄

is called the singular values of H. The singular values are usually arranged in descending order in
magnitude.

Example 3.13 Consider the 2 × 3 matrix

H =
[−4 −1 2

2 0.5 −1

]

We compute

M = H′H =

 20 5 −10

5 1.25 −2.5

−10 −2.5 5




and compute its characteristic polynomial as

det(λI − M) = λ3 − 26.25λ2 = λ2(λ − 26.25)

Thus the eigenvalues of H′H are 26.25, 0, and 0, and the singular values of H are
√

26.25 =
5.1235 and 0. Note that the number of singular values equals min (n, m).

In view of (3.70), we can also compute the singular values of H from the eigenvalues of
HH′. Indeed, we have

M̄ := HH′ =
[

21 −10.5

−10.5 5.25

]

and

det(λI − M̄) = λ2 − 26.25λ = λ(λ − 26.25)

Thus the eigenvalues of HH′ are 26.25 and 0 and the singular values of H′ are 5.1235 and
0. We see that the eigenvalues of H′H differ from those of HH′ only in the number of zero
eigenvalues and the singular values of H equal the singular values of H′.

3.11 Norms of Matrices 77

For M = H′H, there exists, following Theorem 3.6, an orthogonal matrix Q such that

Q′H′HQ = D =: S′S (3.71)

where D is an n × n diagonal matrix with λ2
i on the diagonal. The matrix S is m × n with the

singular values λi on the diagonal. Manipulation on (3.71) will lead eventially to the theorem
that follows.

� Theorem 3.9 (Singular-value decomposition)

Every m × n matrix H can be transformed into the form

H = RSQ′

with R′R = RR′ = Im, Q′Q = QQ′ = In, and S being m × n with the singular values of H on the
diagonal.

The columns of Q are orthonormalized eigenvectors of H′H and the columns of R
are orthonormalized eigenvectors of HH′. Once R, S, and Q are computed, the rank of H
equals the number of nonzero singular values. If the rank of H is r , the first r columns of
R are an orthonormal basis of the range space of H. The last (n − r) columns of Q are an
orthonormal basis of the null space of H. Although computing singular-value decomposition is
time consuming, it is very reliable and gives a quantitative measure of the rank. Thus it is used in
MATLAB to compute the rank, range space, and null space. In MATLAB, the singular values
of H can be obtained by typing s=svd(H). Typing [R,S,Q]=svd(H) yields the three
matrices in the theorem. Typing orth(H) and null(H) yields, respectively, orthonormal
bases of the range space and null space of H. The function null will be used repeatedly in
Chapter 7.

Example 3.14 Consider the matrix in (3.11). We type

a=[0 1 1 2;1 2 3 4;2 0 2 0];
[r,s,q]=svd(a)

which yield

r =

 0.3782 −0.3084 0.8729

0.8877 −0.1468 −0.4364

0.2627 0.9399 0.2182


 s =


 6.1568 0 0 0

0 2.4686 0 0

0 0 0 0




q =




0.2295 0.7020 0.3434 −0.5802

0.3498 −0.2439 0.8384 0.3395

0.5793 0.4581 −0.3434 0.5802

0.6996 −0.4877 −0.2475 −0.4598




Thus the singular values of the matrix A in (3.11) are 6.1568, 2.4686, and 0. The matrix has
two nonzero singular values, thus its rank is 2 and, consequently, its nullity is 4 − ρ(A) = 2.
The first two columns of r are the orthonormal basis in (3.13) and the last two columns of q

are the orthonormal basis in (3.14).

78 LINEAR ALGEBRA

3.11 Norms of Matrices

The concept of norms for vectors can be extended to matrices. This concept is needed in
Chapter 5. Let A be an m × n matrix. The norm of A can be defined as

||A|| = sup
x �=0

||Ax||
||x|| = sup

||x||=1
||Ax|| (3.72)

where sup stands for supremum or the least upper bound. This norm is defined through the
norm of x and is therefore called an induced norm. For different ||x||, we have different ||A||.
For example, if the 1-norm ||x||1 is used, then

||A||1 = max
j

(
m∑

i=1

|aij |
)

= largest column absolute sum

where aij is the ij th element of A. If the Euclidean norm ||x||2 is used, then

||A||2 = largest singular value of A

= (largest eigenvalue of A′A)1/2

If the infinite-norm ||x||∞ is used, then

||A||∞ = max
i


 n∑

j=1

|aij |

 = largest row absolute sum

These norms are all different for the same A. For example, if

A =
[

3 2

−1 0

]

then ||A||1 = 3 + | − 1| = 4, ||A||2 = 3.7, and ||A||∞ = 3 + 2 = 5, as shown in Fig.
3.3. The MATLAB functions norm(a,1), norm(a,2)=norm(a), and norm(a,inf)
compute the three norms.

The norm of matrices has the following properties:

||Ax|| ≤ ||A||||x||
||A + B|| ≤ ||A|| + ||B||

||AB|| ≤ ||A||||B||

PROBLEMS
The reader should try first to solve all problems involving numerical numbers by hand and
then verify the results using MATLAB or any software.

3.1 Consider Fig. 3.1. What is the representation of the vector x with respect to the basis
{q1, i2}? What is the representation of q1 with respect to {i2, q2}?

3.2 What are the 1-norm, 2-norm, and infinite-norm of the vectors

Problems 79

Figure 3.3 Different norms of A.

x1 =

 2

−3

1


 x2 =


 1

1

1




3.3 Find two orthonormal vectors that span the same space as the two vectors in Problem
3.2.

3.4 Consider an n × m matrix A with n ≥ m. If all columns of A are orthonormal, then
A′A = Im. What can you say about AA′?

3.5 Find the ranks and nullities of the following matrices:

80 LINEAR ALGEBRA

A1 =

 0 1 0

0 0 0

0 0 1


 A2 =


 4 1 −1

3 2 0

1 1 0


 A3 =


 1 2 3 4

0 −1 −2 2

0 0 0 1




3.6 Find bases of the range spaces and null spaces of the matrices in Problem 3.5.

3.7 Consider the linear algebraic equation
 2 −1

−3 3

−1 2


 x =


 1

0

1


 = y

It has three equations and two unknowns. Does a solution x exist in the equation? Is the
solution unique? Does a solution exist if y = [1 1 1]′?

3.8 Find the general solution of
 1 2 3 4

0 −1 −2 2

0 0 0 1


 x =


 3

2

1




How many parameters do you have?

3.9 Find the solution in Example 3.3 that has the smallest Euclidean norm.

3.10 Find the solution in Problem 3.8 that has the smallest Euclidean norm.

3.11 Consider the equation

x[n] = Anx[0] + An−1bu[0] + An−2bu[1] + · · · + Abu[n − 2] + bu[n − 1]

where A is an n × n matrix and b is an n × 1 column vector. Under what conditions on
A and b will there exist u[0], u[1], . . . , u[n − 1] to meet the equation for any x[n] and
x[0]? [Hint: Write the equation in the form

x[n] − Anx[0] = [b Ab · · · An−1b]




u[n − 1]

u[n − 2]
...

u[0]


]

3.12 Given

A =




2 1 0 0

0 2 1 0

0 0 2 0

0 0 0 1


 b =




0

0

1

1


 b̄ =




1

2

3

1




what are the representations of A with respect to the basis {b, Ab, A2b, A3b} and the
basis {b̄, Ab̄, A2b̄, A3b̄}, respectively? (Note that the representations are the same!)

3.13 Find Jordan-form representations of the following matrices:

Problems 81

A1 =

 1 4 10

0 2 0

0 0 3


 A2 =


 0 1 0

0 0 1

−2 −4 −3




A3 =

 1 0 −1

0 1 0

0 0 2


 A4 =


 0 4 3

0 20 16

0 −25 −20




Note that all except A4 can be diagonalized.

3.14 Consider the companion-form matrix

A =




−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0




Show that its characteristic polynomial is given by

�(λ) = λ4 + α1λ
3 + α2λ

2 + α3λ + α4

Show also that if λi is an eigenvalue of A or a solution of �(λ) = 0, then [λ3
i λ2

i λi 1]′
is an eigenvector of A associated with λi .

3.15 Show that the Vandermonde determinant


λ3
1 λ3

2 λ3
3 λ3

4

λ2
1 λ2

2 λ2
3 λ2

4

λ1 λ2 λ3 λ4

1 1 1 1




equals
∏

1≤i<j≤4(λj − λi). Thus we conclude that the matrix is nonsingular or, equiva-
lently, the eigenvectors are linearly independent if all eigenvalues are distinct.

3.16 Show that the companion-form matrix in Problem 3.14 is nonsingular if and only if
α4 �= 0. Under this assumption, show that its inverse equals

A−1 =




0 1 0 0

0 0 1 0

0 0 0 1

−1/α4 −α1/α4 −α2/α4 −α3/α4




3.17 Consider

A =

 λ λT λT 2/2

0 λ λT

0 0 λ




with λ �= 0 and T > 0. Show that [0 0 1]′ is a generalized eigenvector of grade 3 and
the three columns of

82 LINEAR ALGEBRA

Q =

 λ2T 2 λT 2 0

0 λT 0

0 0 1




constitute a chain of generalized eigenvectors of length 3. Verify

Q−1AQ =

 λ 1 0

0 λ 1

0 0 λ




3.18 Find the characteristic polynomials and the minimal polynomials of the following
matrices: 


λ1 1 0 0

0 λ1 1 0

0 0 λ1 0

0 0 0 λ2







λ1 1 0 0

0 λ1 1 0

0 0 λ1 0

0 0 0 λ1







λ1 1 0 0

0 λ1 0 0

0 0 λ1 0

0 0 0 λ1







λ1 0 0 0

0 λ1 0 0

0 0 λ1 0

0 0 0 λ1




3.19 Show that if λ is an eigenvalue of A with eigenvector x, then f (λ) is an eigenvalue of
f (A) with the same eigenvector x.

3.20 Show that an n × n matrix has the property Ak = 0 for k ≥ m if and only if A has
eigenvalues 0 with multiplicity n and index m or less. Such a matrix is called a nilpotent
matrix.

3.21 Given

A =

 1 1 0

0 0 1

0 0 1




find A10, A103, and eAt .

3.22 Use two different methods to compute eAt for A1 and A4 in Problem 3.13.

3.23 Show that functions of the same matrix commute; that is,

f (A)g(A) = g(A)f (A)

Consequently we have AeAt = eAtA.

3.24 Let

C =

 λ1 0 0

0 λ2 0

0 0 λ3




Problems 83

Find a matrix B such that eB = C. Show that if λi = 0 for some i, then B does not exist.
Let

C =

 λ 1 0

0 λ 0

0 0 λ




Find a B such that eB = C. Is it true that, for any nonsingular C, there exists a matrix B
such that eB = C?

3.25 Let

(sI − A)−1 = 1

�(s)
Adj (sI − A)

and let m(s) be the monic greatest common divisor of all entries of Adj (sI − A). Verify
for the matrix A3 in Problem 3.13 that the minimal polynominal of A equals �(s)/m(s).

3.26 Define

(sI − A)−1 := 1

�(s)

[
R0s

n−1 + R1s
n−2 + · · · + Rn−2s + Rn−1

]
where

�(s) := det(sI − A) := sn + α1s
n−1 + α2s

n−2 + · · · + αn

and Ri are constant matrices. This definition is valid because the degree in s of the adjoint
of (sI − A) is at most n − 1. Verify

α1 = − tr(AR0)

1
R0 = I

α2 = − tr(AR1)

2
R1 = AR0 + α1I = A + α1I

α3 = − tr(AR2)

3
R2 = AR1 + α2I = A2 + α1A + α2I

...

αn−1 = − tr(ARn−2)

n − 1
Rn−1 = ARn−2 + αn−1I = An−1 + α1An−2

+ · · · + αn−2A + αn−1I

αn = − tr(ARn−1)

n
0 = ARn−1 + αnI

where tr stands for the trace of a matrix and is defined as the sum of all its diagonal
entries. This process of computing αi and Ri is called the Leverrier algorithm.

3.27 Use Problem 3.26 to prove the Cayley–Hamilton theorem.

3.28 Use Problem 3.26 to show

(sI − A)−1 = 1

�(s)

[
An−1 + (s + α1)An−2 + (s2 + α1s + α2)An−3

84 LINEAR ALGEBRA

+ · · · + (sn−1 + α1s
n−2 + · · · + αn−1)I

]

3.29 Let all eigenvalues of A be distinct and let qi be a right eigenvector of A associated with
λi ; that is, Aqi = λiqi . Define Q = [q1 q2 · · · qn] and define

P := Q−1 =:




p1

p2

...

pn




where pi is the ith row of P. Show that pi is a left eigenvector of A associated with λi ;
that is, piA = λipi .

3.30 Show that if all eigenvalues of A are distinct, then (sI − A)−1 can be expressed as

(sI − A)−1 =
∑ 1

s − λi

qipi

where qi and pi are right and left eigenvectors of A associated with λi .

3.31 Find the M to meet the Lyapunov equation in (3.59) with

A =
[

0 1

−2 −2

]
B = 3 C =

[
3

3

]

What are the eigenvalues of the Lyapunov equation? Is the Lyapunov equation singular?
Is the solution unique?

3.32 Repeat Problem 3.31 for

A =
[

0 1

−1 −2

]
B = 1 C1 =

[
3

3

]
C2 =

[
3

−3

]

with two different C.

3.33 Check to see if the following matrices are positive definite or semidefinite:
 2 3 2

3 1 0

2 0 2





 0 0 −1

0 0 0

−1 0 2





 a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3




3.34 Compute the singular values of the following matrices:[−1 0 1

2 −1 0

] [−1 2

2 4

]

3.35 If A is symmetric, what is the relationship between its eigenvalues and singular values?

Problems 85

3.36 Show

det


In +




a1

a2

...

an


 [b1 b2 · · · bn]


 = 1 +

n∑
m=1

ambm

3.37 Show (3.65).

3.38 Consider Ax = y, where A is m × n and has rank m. Is (A′A)−1A′y a solution? If not,
under what condition will it be a solution? Is A′(AA′)−1y a solution?

Chapter

4
State-Space Solutions

and Realizations

4.1 Introduction

We showed in Chapter 2 that linear systems can be described by convolutions and, if lumped,
by state-space equations. This chapter discusses how to find their solutions. First we discuss
briefly how to compute solutions of the input-output description. There is no simple analytical
way of computing the convolution

y(t) =
∫ t

τ=t0

g(t, τ)u(τ) dτ

The easiest way is to compute it numerically on a digital computer. Before doing so, the
equation must be discretized. One way is to discretize it as

y(k�) =
k∑

m=k0

g(k�, m�)u(m�)� (4.1)

where � is called the integration step size. This is basically the discrete convolution discussed
in (2.34). This discretization is the easiest but yields the least accurate result for the same
integration step size. For other integration methods, see, for example, Reference [17].

For the linear time-invariant (LTI) case, we can also use ŷ(s) = ĝ(s)û(s) to compute
the solution. If a system is distributed, ĝ(s) will not be a rational function of s. Except for
some special cases, it is simpler to compute the solution directly in the time domain as in
(4.1). If the system is lumped, ĝ(s) will be a rational function of s. In this case, if the Laplace
transform of u(t) is also a rational function of s, then the solution can be obtained by taking the
inverse Laplace transform of ĝ(s)û(s). This method requires computing poles, carrying out

86

4.2 Solution of LTI State Equations 87

partial fraction expansion, and then using a Laplace transform table. These can be carried out
using the MATLAB functionsroots andresidue. However, when there are repeated poles,
the computation may become very sensitive to small changes in the data, including roundoff
errors; therefore computing solutions using the Laplace transform is not a viable method on
digital computers. A better method is to transform transfer functions into state-space equations
and then compute the solutions. This chapter discusses solutions of state equations, how to
transform transfer functions into state equations, and other related topics. We discuss first the
time-invariant case and then the time-varying case.

4.2 Solution of LTI State Equations

Consider the linear time-invariant (LTI) state-space equation

ẋ(t) = Ax(t) + Bu(t) (4.2)

y(t) = Cx(t) + Du(t) (4.3)

where A, B, C, and D are, respectively, n × n, n × p, q × n, and q × p constant matrices.
The problem is to find the solution excited by the initial state x(0) and the input u(t). The
solution hinges on the exponential function of A studied in Section 3.6. In particular, we need
the property in (3.55) or

d

dt
eAt = AeAt = eAtA

to develop the solution. Premultiplying e−At on both sides of (4.2) yields

e−At ẋ(t) − e−AtAx(t) = e−AtBu(t)

which implies

d

dt

(
e−Atx(t)

) = e−AtBu(t)

Its integration from 0 to t yields

e−Aτ x(τ)
∣∣t
τ=0 =

∫ t

0
e−Aτ Bu(τ) dτ

Thus we have

e−Atx(t) − e0x(0) =
∫ t

0
e−Aτ Bu(τ) dτ (4.4)

Because the inverse of e−At is eAt and e0 = I as discussed in (3.54) and (3.52), (4.4) implies

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ (4.5)

This is the solution of (4.2).
It is instructive to verify that (4.5) is the solution of (4.2). To verify this, we must show

that (4.5) satisfies (4.2) and the initial condition x(t) = x(0) at t = 0. Indeed, at t = 0, (4.5)
reduces to

88 STATE-SPACE SOLUTIONS AND REALIZATIONS

x(0) = eA·0x(0) = e0x(0) = Ix(0) = x(0)

Thus (4.5) satisfies the initial condition. We need the equation

∂

∂t

∫ t

t0

f (t, τ) dτ =
∫ t

t0

(
∂

∂t
f (t, τ)

)
dτ + f (t, τ)|τ=t (4.6)

to show that (4.5) satisfies (4.2). Differentiating (4.5) and using (4.6), we obtain

ẋ(t) = d

dt

[
eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ) dτ

]

= AeAtx(0) +
∫ t

0
AeA(t−τ)Bu(τ) dτ + eA(t−τ)Bu(τ)

∣∣
τ=t

= A
(

eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ

)
+ eA·0Bu(t)

which becomes, after substituting (4.5),

ẋ(t) = Ax(t) + Bu(t)

Thus (4.5) meets (4.2) and the initial condition x(0) and is the solution of (4.2).
Substituting (4.5) into (4.3) yields the solution of (4.3) as

y(t) = CeAtx(0) + C
∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t) (4.7)

This solution and (4.5) are computed directly in the time domain. We can also compute the
solutions by using the Laplace transform. Applying the Laplace transform to (4.2) and (4.3)
yields, as derived in (2.14) and (2.15),

x̂(s) = (sI − A)−1[x(0) + Bû(s)]

ŷ(s) = C(sI − A)−1[x(0) + Bû(s)] + Dû(s)

Once x̂(s) and ŷ(s) are computed algebraically, their inverse Laplace transforms yield the
time-domain solutions.

We now give some remarks concerning the computation of eAt . We discussed in Section
3.6 three methods of computing functions of a matrix. They can all be used to compute eAt :

1. Using Theorem 3.5: First, compute the eigenvalues of A; next, find a polynomial h(λ) of
degree n − 1 that equals eλt on the spectrum of A; then eAt = h(A).

2. Using Jordan form of A: Let A = QÂQ−1; then eAt = QeÂtQ−1, where Â is in Jordan

form and eÂt can readily be obtained by using (3.48).
3. Using the infinite power series in (3.51): Although the series will not, in general, yield a

closed-form solution, it is suitable for computer computation, as discussed following (3.51).

In addition, we can use (3.58) to compute eAt , that is,

eAt = L−1(sI − A)−1 (4.8)

4.2 Solution of LTI State Equations 89

The inverse of (sI−A) is a function of A; therefore, again, we have many methods to compute
it:

1. Taking the inverse of (sI − A).

2. Using Theorem 3.5.

3. Using (sI − A)−1 = Q(sI − Â)−1Q−1 and (3.49).

4. Using the infinite power series in (3.57).
5. Using the Leverrier algorithm discussed in Problem 3.26.

Example 4.1 We use Methods 1 and 2 to compute (sI − A)−1, where

A =
[

0 −1

1 −2

]

Method 1: We use (3.20) to compute

(sI − A)−1 =
[

s 1

−1 s + 2

]−1

= 1

s2 + 2s + 1

[
s + 2 −1

1 s

]

=
[

(s + 2)/(s + 1)2 −1/(s + 1)2

1/(s + 1)2 s/(s + 1)2

]

Method 2: The eigenvalues of A are −1, −1. Let h(λ) = β0 + β1λ. If h(λ) equals f (λ) :=
(s − λ)−1 on the spectrum of A, then

f (−1) = h(−1) : (s + 1)−1 = β0 − β1

f ′(−1) = h′(−1) : (s + 1)−2 = β1

Thus we have

h(λ) = [(s + 1)−1 + (s + 1)−2] + (s + 1)−2λ

and

(sI − A)−1 = h(A) = [(s + 1)−1 + (s + 1)−2]I + (s + 1)−2A

=
[

(s + 2)/(s + 1)2 −1/(s + 1)2

1/(s + 1)2 s/(s + 1)2

]

Example 4.2 Consider the equation

ẋ(t) =
[

0 −1

1 −2

]
x(t) +

[
0

1

]
u(t)

Its solution is

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ

The matrix function eAt is the inverse Laplace transform of (sI − A)−1, which was computed
in the preceding example. Thus we have

90 STATE-SPACE SOLUTIONS AND REALIZATIONS

eAt = L−1




s + 2

(s + 1)2

−1

(s + 1)2

1

(s + 1)2

s

(s+)2


 =

[
(1 + t)e−t −te−t

te−t (1 − t)e−t

]

and

x(t) =
[

(1 + t)e−t −te−t

te−t (1 − t)e−t

]
x(0) +

[− ∫ t

0 (t − τ)e−(t−τ)u(τ) dτ∫ t

0 [1 − (t − τ)]e−(t−τ)u(τ) dτ

]

We discuss a general property of the zero-input response eAtx(0). Consider the second
matrix in (3.39). Then we have

eAt = Q




eλ1t teλ1t t2eλ1t /2 0 0

0 eλ1t teλ1t 0 0

0 0 eλ1t 0 0

0 0 0 eλ1t 0

0 0 0 0 eλ2t


Q−1

Every entry of eAt and, consequently, of the zero-input response is a linear combination of terms
{eλ1t , teλ1t , t2eλ1t , eλ2t }. These terms are dictated by the eigenvalues and their indices. In
general, if A has eigenvalue λ1 with index n̄1, then every entry of eAt is a linear combination of

eλ1t teλ1t · · · t n̄1−1eλ1t

Every such term is analytic in the sense that it is infinitely differentiable and can be expanded
in a Taylor series at every t . This is a nice property and will be used in Chapter 6.

If every eigenvalue, simple or repeated, of A has a negative real part, then every zero-
input response will approach zero as t → ∞. If A has an eigenvalue, simple or repeated, with
a positive real part, then most zero-input responses will grow unbounded as t → ∞. If A has
some eigenvalues with zero real part and all with index 1 and the remaining eigenvalues all
have negative real parts, then no zero-input response will grow unbounded. However, if the
index is 2 or higher, then some zero-input response may become unbounded. For example, if
A has eigenvalue 0 with index 2, then eAt contains the terms {1, t}. If a zero-input response
contains the term t , then it will grow unbounded.

4.2.1 Discretization

Consider the continuous-time state equation

ẋ(t) = Ax(t) + Bu(t) (4.9)

y(t) = Cx(t) + Du(t) (4.10)

If the set of equations is to be computed on a digital computer, it must be discretized. Because

ẋ(t) = lim
T →0

x(t + T) − x(t)

T

4.2 Solution of LTI State Equations 91

we can approximate (4.9) as

x(t + T) = x(t) + Ax(t)T + Bu(t)T (4.11)

If we compute x(t) and y(t) only at t = kT for k = 0, 1, . . . , then (4.11) and (4.10) become

x((k + 1)T) = (I + T A)x(kT) + T Bu(kT)

y(kT) = Cx(kT) + Du(kT)

This is a discrete-time state-space equation and can easily be computed on a digital computer.
This discretization is the easiest to carry out but yields the least accurate results for the same
T . We discuss next a different discretization.

If an input u(t) is generated by a digital computer followed by a digital-to-analog
converter, then u(t) will be piecewise constant. This situation often arises in computer control
of control systems. Let

u(t) = u(kT) =: u[k] for kT ≤ t < (k + 1)T (4.12)

for k = 0, 1, 2, This input changes values only at discrete-time instants. For this input,
the solution of (4.9) still equals (4.5). Computing (4.5) at t = kT and t = (k + 1)T yields

x[k] := x(kT) = eAkT x(0) +
∫ kT

0
eA(kT −τ)Bu(τ) dτ (4.13)

and

x[k + 1] := x((k + 1)T) = eA(k+1)T x(0) +
∫ (k+1)T

0
eA((k+1)T −τ)Bu(τ) dτ (4.14)

Equation (4.14) can be written as

x[k + 1] = eAT

[
eAkT x(0) +

∫ kT

0
eA(kT −τ)Bu(τ)dτ

]

+
∫ (k+1)T

kT

eA(kT +T −τ)Bu(τ) dτ

which becomes, after substituting (4.12) and (4.13) and introducing the new variable α :=
kT + T − τ ,

x[k + 1] = eAT x[k] +
(∫ T

0
eAαdα

)
Bu[k]

Thus, if an input changes value only at discrete-time instants kT and if we compute only the
responses at t = kT , then (4.9) and (4.10) become

x[k + 1] = Adx[k] + Bdu[k] (4.15)

y[k] = Cdx[k] + Ddu[k] (4.16)

92 STATE-SPACE SOLUTIONS AND REALIZATIONS

with

Ad = eAT Bd =
(∫ T

0
eAτ dτ

)
B Cd = C Dd = D (4.17)

This is a discrete-time state-space equation. Note that there is no approximation involved in
this derivation and (4.15) yields the exact solution of (4.9) at t = kT if the input is piecewise
constant.

We discuss the computation of Bd . Using (3.51), we have∫ T

0

(
I + Aτ + A2 τ 2

2!
+ · · ·

)
dτ

= T I + T 2

2!
A + T 3

3!
A2 + T 4

4!
A3 + · · ·

This power series can be computed recursively as in computing (3.51). If A is nonsingular,
then the series can be written as, using (3.51),

A−1

(
T A + T 2

2!
A2 + T 3

3!
A3 + · · · + I − I

)
= A−1(eAT − I)

Thus we have

Bd = A−1(Ad − I)B (if A is nonsingular) (4.18)

Using this formula, we can avoid computing an infinite series.
The MATLAB function [ad,bd]=c2d(a,b,T) transforms the continuous-time state

equation in (4.9) into the discrete-time state equation in (4.15).

4.2.2 Solution of Discrete-Time Equations

Consider the discrete-time state-space equation

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
(4.19)

where the subscript d has been dropped. It is understood that if the equation is obtained from
a continuous-time equation, then the four matrices must be computed from (4.17). The two
equations in (4.19) are algebraic equations. Once x[0] and u[k], k = 0, 1, . . ., are given, the
response can be computed recursively from the equations.

The MATLAB functiondstep computes unit-step responses of discrete-time state-space
equations. It also computes unit-step responses of discrete transfer functions; internally, it first
transforms the transfer function into a discrete-time state-space equation by calling tf2ss,
which will be discussed later, and then uses dstep. The function dlsim, an acronym for
discrete linear simulation, computes responses excited by any input. The function step
computes unit-step responses of continuous-time state-space equations. Internally, it first uses
the function c2d to transform a continuous-time state equation into a discrete-time equation
and then carries out the computation. If the function step is applied to a continuous-time
transfer function, then it first uses tf2ss to transform the transfer function into a continuous-
time state equation and then discretizes it by using c2d and then uses dstep to compute the

4.3 Equivalent State Equations 93

response. Similar remarks apply to lsim, which computes responses of continuous-time state
equations or transfer functions excited by any input.

In order to discuss the general behavior of discrete-time state equations, we will develop
a general form of solutions. We compute

x[1] = Ax[0] + Bu[0]

x[2] = Ax[1] + Bu[1] = A2x[0] + ABu[0] + Bu[1]

Proceeding forward, we can readily obtain, for k > 0,

x[k] = Akx[0] +
k−1∑
m=0

Ak−1−mBu[m] (4.20)

y[k] = CAkx[0] +
k−1∑
m=0

CAk−1−mBu[m] + Du[k] (4.21)

They are the discrete counterparts of (4.5) and (4.7). Their derivations are considerably simpler
than the continuous-time case.

We discuss a general property of the zero-input response Akx[0]. Suppose A has eigen-
value λ1 with multiplicity 4 and eigenvalue λ2 with multiplicity 1 and suppose its Jordan form
is as shown in the second matrix in (3.39). In other words, λ1 has index 3 and λ2 has index 1.
Then we have

Ak = Q




λk
1 kλk−1

1 k(k − 1)λk−2
1 /2 0 0

0 λk
1 kλk−1

1 0 0

0 0 λk
1 0 0

0 0 0 λk
1 0

0 0 0 0 λk
2


Q−1

which implies that every entry of the zero-input response is a linear combination of {λk
1, kλk−1

1 ,

k2λk−2
1 , λk

2}. These terms are dictated by the eigenvalues and their indices.
If every eigenvalue, simple or repeated, of A has magnitude less than 1, then every zero-

input response will approach zero as k → ∞. If A has an eigenvalue, simple or repeated, with
magnitude larger than 1, then most zero-input responses will grow unbounded as k → ∞. If A
has some eigenvalues with magnitude 1 and all with index 1 and the remaining eigenvalues all
have magnitudes less than 1, then no zero-input response will grow unbounded. However, if
the index is 2 or higher, then some zero-state response may become unbounded. For example,
if A has eigenvalue 1 with index 2, then Ak contains the terms {1, k}. If a zero-input response
contains the term k, then it will grow unbounded as k → ∞.

4.3 Equivalent State Equations

The example that follows provides a motivation for studying equivalent state equations.

Example 4.3 Consider the network shown in Fig. 4.1. It consists of one capacitor, one
inductor, one resistor, and one voltage source. First we select the inductor current x1 and

94 STATE-SPACE SOLUTIONS AND REALIZATIONS

capacitor voltage x2 as state variables as shown. The voltage across the inductor is ẋ1 and
the current through the capacitor is ẋ2. The voltage across the resistor is x2; thus its current is
x2/1 = x2. Clearly we have x1 = x2 + ẋ2 and ẋ1 + x2 − u = 0. Thus the network is described
by the following state equation:[

ẋ1

ẋ2

]
=
[

0 −1

1 −1

] [
x1

x2

]
+
[

1

0

]
u

y = [0 1]x (4.22)

If, instead, the loop currents x̄1 and x̄2 are chosen as state variables as shown, then the voltage
across the inductor is ˙̄x1 and the voltage across the resistor is (x̄1 − x̄2) · 1. From the left-hand-
side loop, we have

u = ˙̄x1 + x̄1 − x̄2 or ˙̄x1 = −x̄1 + x̄2 + u

The voltage across the capacitor is the same as the one across the resistor, which is x̄1 − x̄2.
Thus the current through the capacitor is ˙̄x1 − ˙̄x2, which equals x̄2 or

˙̄x2 = ˙̄x1 − x̄2 = −x̄1 + u

Thus the network is also described by the state equation[˙̄x1

˙̄x2

]
=
[−1 1

−1 0

] [
x̄1

x̄2

]
+
[

1

1

]
u

y = [1 − 1]x̄

(4.23)

The state equations in (4.22) and (4.23) describe the same network; therefore they must be
closely related. In fact, they are equivalent as will be established shortly.

Consider the n-dimensional state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(4.24)

where A is an n × n constant matrix mapping an n-dimensional real space R n into itself. The
state x is a vector in R n for all t ; thus the real space is also called the state space. The state
equation in (4.24) can be considered to be associated with the orthonormal basis in (3.8). Now
we study the effect on the equation by choosing a different basis.

Figure 4.1 Network with two different
sets of state variables.

4.3 Equivalent State Equations 95

Definition 4.1 Let P be an n× n real nonsingular matrix and let x̄ = Px. Then the state
equation,

˙̄x(t) = Āx̄(t) + B̄u(t)

y(t) = C̄x̄(t) + D̄u(t)
(4.25)

where

Ā = PAP−1 B̄ = PB C̄ = CP−1 D̄ = D (4.26)

is said to be (algebraically) equivalent to (4.24) and x̄ = Px is called an equivalence
transformation.

Equation (4.26) is obtained from (4.24) by substituting x(t) = P−1x̄(t) and ẋ(t) =
P−1 ˙̄x(t). In this substitution, we have changed, as in Equation (3.7), the basis vectors of the
state space from the orthonormal basis to the columns of P−1 =: Q. Clearly A and Ā are similar
and Ā is simply a different representation of A. To be precise, let Q = P−1 = [q1 q2 · · · qn].
Then the ith column of Ā is, as discussed in Section 3.4, the representation of Aqi with respect
to the basis {q1, q2, · · · , qn}. From the equation B̄ = PB or B = P−1B̄ = [q1 q2 · · · qn]B̄,
we see that the ith column of B̄ is the representation of the ith column of B with respect to the
basis {q1, q2, · · · , qn}. The matrix C̄ is to be computed from CP−1. The matrix D, called the
direct transmission part between the input and output, has nothing to do with the state space
and is not affected by the equivalence transformation.

We show that (4.24) and (4.25) have the same set of eigenvalues and the same transfer
matrix. Indeed, we have, using det(P) det(P−1) = 1,

�̄(λ) = det(λI − Ā) = det(λPP−1 − PAP−1) = det[P(λI − A)P−1]

= det(P) det(λI − A) det(P−1) = det(λI − A) = �(λ)

and

ˆ̄G(s) = C̄(sI − Ā)−1B̄ + D̄ = CP−1[P(sI − A)P−1]−1PB + D

= CP−1P(sI − A)−1P−1PB + D = C(sI − A)−1B + D = Ĝ(s)

Thus equivalent state equations have the same characteristic polynomial and, consequently, the
same set of eigenvalues and same transfer matrix. In fact, all properties of (4.24) are preserved
or invariant under any equivalence transformation.

Consider again the network shown in Fig. 4.1, which can be described by (4.22) and (4.23).
We show that the two equations are equivalent. From Fig. 4.1, we have x1 = x̄1. Because the
voltage across the resistor is x2, its current is x2/1 and equals x̄1 − x̄2. Thus we have[

x1

x2

]
=
[

1 0

1 −1

] [
x̄1

x̄2

]
or [

x̄1

x̄2

]
=
[

1 0

1 −1

]−1 [
x1

x2

]
=
[

1 0

1 −1

] [
x1

x2

]
(4.27)

96 STATE-SPACE SOLUTIONS AND REALIZATIONS

Note that, for this P, its inverse happens to equal itself. It is straightforward to verify that (4.22)
and (4.23) are related by the equivalence transformation in (4.26).

The MATLAB function [ab,bb,cb,db]=ss2ss(a,b,c,d,p) carries out equiv-
alence transformations.

Two state equations are said to be zero-state equivalent if they have the same transfer
matrix or

D + C(sI − A)−1B = D̄ + C̄(sI − Ā)−1B̄

This becomes, after substituting (3.57),

D + CBs−1 + CABs−2 + CA2Bs−3 + · · · = D̄ + C̄B̄s−1 + C̄ĀB̄s−2 + C̄Ā
2
B̄s−3 + · · ·

Thus we have the theorem that follows.

� Theorem 4.1

Two linear time-invariant state equations {A, B, C, D} and {Ā, B̄, C̄, D̄} are zero-state equivalent
or have the same transfer matrix if and only if D = D̄ and

CAmB = C̄Ā
m

B̄ m = 0, 1, 2, . . .

It is clear that (algebraic) equivalence implies zero-state equivalence. In order for two
state equations to be equivalent, they must have the same dimension. This is, however, not the
case for zero-state equivalence, as the next example shows.

Example 4.4 Consider the two networks shown in Fig. 4.2. The capacitor is assumed to have
capacitance −1 F. Such a negative capacitance can be realized using an op-amp circuit. For the
circuit in Fig. 4.2(a), we have y(t) = 0.5 ·u(t) or ŷ(s) = 0.5û(s). Thus its transfer function is
0.5. To compute the transfer function of the network in Fig. 4.2(b), we may assume the initial
voltage across the capacitor to be zero. Because of the symmetry of the four resistors, half of
the current will go through each resistor or i(t) = 0.5u(t), where i(t) denotes the right upper
resistor’s current. Consequently, y(t) = i(t) ·1 = 0.5u(t) and the transfer function also equals
0.5. Thus the two networks, or more precisely their state equations, are zero-state equivalent.
This fact can also be verified by using Theorem 4.1. The network in Fig. 4.2(a) is described
by the zero-dimensional state equation y(t) = 0.5u(t) or A = B = C = 0 and D = 0.5. To

Figure 4.2 Two zero-state
equivalent networks.

4.3 Equivalent State Equations 97

develop a state equation for the network in Fig. 4.2(b), we assign the capacitor voltage as state
variable x with polarity shown. Its current is ẋ flowing from the negative to positive polarity
because of the negative capacitance. If we assign the right upper resistor’s current as i(t), then
the right lower resistor’s current is i − ẋ, the left upper resistor’s current is u − i, and the left
lower resistor’s current is u − i + ẋ. The total voltage around the upper right-hand loop is 0:

i − x − (u − i) = 0 or i = 0.5(x + u)

which implies

y = 1 · i = i = 0.5(x + u)

The total voltage around the lower right-hand loop is 0:

x + (i − ẋ) − (u − i + ẋ) = 0

which implies

2ẋ = 2i + x − u = x + u + x − u = 2x

Thus the network in Fig. 4.2(b) is described by the one-dimensional state equation

ẋ(t) = x(t)

y(t) = 0.5x(t) + 0.5u(t)

with Ā = 1, B̄ = 0, C̄ = 0.5, and D̄ = 0.5. We see that D = D̄ = 0.5 and CAmB =
C̄Ā

m
B̄ = 0 for m = 0, 1, Thus the two equations are zero-state equivalent.

4.3.1 Canonical Forms

MATLAB contains the function [ab,bb,cb,db,P]=canon(a,b,c,d, ’type’). If
type=companion, the function will generate an equivalent state equation with Ā in the
companion form in (3.24). This function works only if Q := [b1 Ab1 · · · An−1b1] is
nonsingular, where b1 is the first column of B. This condition is the same as {A, b1} controllable,
as we will discuss in Chapter 6. The P that the function canon generates equals Q−1. See the
discussion in Section 3.4.

We discuss a different canonical form. Suppose A has two real eigenvalues and two
complex eigenvalues. Because A has only real coefficients, the two complex eigenvalues must
be complex conjugate. Let λ1, λ2, α + jβ, and α − jβ be the eigenvalues and q1, q2, q3, and
q4 be the corresponding eigenvectors, where λ1, λ2, α, β, q1, and q2 are all real and q4 equals
the complex conjugate of q3. Define Q = [q1 q2 q3 q4]. Then we have

J :=




λ1 0 0 0

0 λ2 0 0

0 0 α + jβ 0

0 0 0 α − jβ


 = Q−1AQ

Note that Q and J can be obtained from [q,j]=eig(a) in MATLAB as shown in Examples
3.5 and 3.6. This form is useless in practice but can be transformed into a real matrix by the
following similarity transformation

98 STATE-SPACE SOLUTIONS AND REALIZATIONS

Q̄−1JQ̄ :=




1 0 0 0

0 1 0 0

0 0 1 1

0 0 j −j






λ1 0 0 0

0 λ2 0 0

0 0 α + jβ 0

0 0 0 α − jβ




·




1 0 0 0

0 1 0 0

0 0 0.5 −0.5j

0 0 0.5 0.5j


 =




λ1 0 0 0

0 λ2 0 0

0 0 α β

0 0 −β α


 =: Ā

We see that this transformation transforms the complex eigenvalues on the diagonal into
a block with the real part of the eigenvalues on the diagonal and the imaginary part on
the off-diagonal. This new A-matrix is said to be in modal form. The MATLAB function
[ab,bb,cb,db,P]=canon(a,b,c,d, ’modal’) or canon(a,b,c,d) with no
type specified will yield an equivalent state equation with Ā in modal form. Note that there is
no need to transform A into a diagonal form and then to a modal form. The two transformations
can be combined into one as

P−1 = QQ̄ = [q1 q2 q3 q4]




1 0 0 0

0 1 0 0

0 0 0.5 −0.5j

0 0 0.5 0.5j




= [q1 q2 Re(q3) Im(q3)]

where Re and Im stand, respectively, for the real part and imaginary part and we have used in
the last equality the fact that q4 is the complex conjugate of q3. We give one more example. The
modal form of a matrix with real eigenvalue λ1 and two pairs of distinct complex conjugate
eigenvalues αi ± jβi , for i = 1, 2, is

Ā =




λ1 0 0 0 0

0 α1 β1 0 0

0 −β1 α1 0 0

0 0 0 α2 β2

0 0 0 −β2 α2


 (4.28)

It is block diagonal and can be obtained by the similarity transformation

P−1 = [q1 Re(q2) Im(q2) Re(q4) Im(q4)]

where q1, q2, and q4 are, respectively, eigenvectors associated with λ1, α1 +jβ1, and α2 +jβ2.
This form is useful in state-space design.

4.3.2 Magnitude Scaling in Op-Amp Circuits

As discussed in Section 2.3.1, every LTI state equation can be implemented using an op-amp
circuit.1 In actual op-amp circuits, all signals are limited by power supplies. If we use ±15-volt

1. This subsection may be skipped without loss of continuity.

4.3 Equivalent State Equations 99

power supplies, then all signals are roughly limited to ±13 volts. If any signal goes outside
the range, the circuit will saturate and will not behave as the state equation dictates. Therefore
saturation is an important issue in actual op-amp circuit implementation.

Consider an LTI state equation and suppose all signals must be limited to ±M . For linear
systems, if the input magnitude increases by α, so do the magnitudes of all state variables
and the output. Thus there must be a limit on input magnitude. Clearly it is desirable to have
the admissible input magnitude as large as possible. One way to achieve this is to use an
equivalence transformation so that

|xi(t)| ≤ |y(t)| ≤ M

for all i and for all t . The equivalence transformation, however, will not alter the relationship
between the input and output; therefore we can use the original state equation to find the input
range to achieve |y(t)| ≤ M . In addition, we can use the same transformation to amplify some
state variables to increase visibility or accuracy. This is illustrated in the next example.

Example 4.5 Consider the state equation

ẋ =
[−0.1 2

0 −1

]
x +

[
10

0.1

]
u

y = [0.2 − 1]x

Suppose the input is a step function of various magnitude and the equation is to be implemented
using an op-amp circuit in which all signals must be limited to ±10. First we use MATLAB
to find its unit-step response. We type

a=[-0.1 2;0 -1];b=[10;0.1];c=[0.2 -1];d=0;

[y,x,t]=step(a,b,c,d);

plot(t,y,t,x)

which yields the plot in Fig. 4.3(a). We see that |x1|max = 100 > |y|max = 20 and
|x2| << |y|max . The state variable x2 is hardly visible and its largest magnitude is found
to be 0.1 by plotting it separately (not shown). From the plot, we see that if |u(t)| ≤ 0.5, then
the output will not saturate but x1(t) will.

Let us introduce new state variables as

x̄1 = 20

100
x1 = 0.2x1 x̄2 = 20

0.1
x2 = 200x2

With this transformation, the maximum magnitudes of x̄1(t) and x̄2(t) will equal |y|max . Thus
if y(t) does not saturate, neither will all the state variables x̄i . The transformation can be
expressed as x̄ = Px with

P =
[

0.2 0

0 200

]
P−1 =

[
5 0

0 0.005

]

Then its equivalent state equation can readily be computed from (4.26) as

˙̄x =
[−0.1 0.002

0 −1

]
x̄ +

[
2

20

]
u

y = [1 − 0.005]x̄

100 STATE-SPACE SOLUTIONS AND REALIZATIONS

Figure 4.3 Time responses.

Its step responses due to u(t) = 0.5 are plotted in Fig. 4.3(b). We see that all signals lie inside
the range ±10 and occupy the full scale. Thus the equivalence state equation is better for
op-amp circuit implementation or simulation.

The magnitude scaling is important in using op-amp circuits to implement or simulate
continuous-time systems. Although we discuss only step inputs, the idea is applicable to any
input. We mention that analog computers are essentially op-amp circuits. Before the advent of
digital computers, magnitude scaling in analog computer simulation was carried out by trial
and error. With the help of digital computer simulation, the magnitude scaling can now be
carried out easily.

4.4 Realizations

Every linear time-invariant (LTI) system can be described by the input–output description

ŷ(s) = Ĝ(s)û(s)

and, if the system is lumped as well, by the state-space equation description

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(4.29)

If the state equation is known, the transfer matrix can be computed as Ĝ(s) = C(sI−A)−1B+D.
The computed transfer matrix is unique. Now we study the converse problem, that is, to find a
state-space equation from a given transfer matrix. This is called the realization problem. This
terminology is justified by the fact that, by using the state equation, we can build an op-amp
circuit for the transfer matrix.

A transfer matrix Ĝ(s) is said to be realizable if there exists a finite-dimensional state
equation (4.29) or, simply, {A, B, C, D} such that

Ĝ(s) = C(sI − A)−1B + D

4.4 Realizations 101

and {A, B, C, D} is called a realization of Ĝ(s). An LTI distributed system can be described
by a transfer matrix, but not by a finite-dimensional state equation. Thus not every Ĝ(s) is
realizable. If Ĝ(s) is realizable, then it has infinitely many realizations, not necessarily of
the same dimension. Thus the realization problem is fairly complex. We study here only the
realizability condition. The other issues will be studied in later chapters.

� Theorem 4.2

A transfer matrix Ĝ(s) is realizable if and only if Ĝ(s) is a proper rational matrix.

We use (3.19) to write

Ĝsp(s) := C(sI − A)−1B = 1

det(sI − A)
C[Adj (sI − A)]B (4.30)

If A is n × n, then det (sI − A) has degree n. Every entry of Adj (sI − A) is the determinant
of an (n − 1) × (n − 1) submatrix of (sI − A); thus it has at most degree (n − 1). Their linear
combinations again have at most degree (n − 1). Thus we conclude that C(sI − A)−1B is a
strictly proper rational matrix. If D is a nonzero matrix, then C(sI−A)−1B+D is proper. This
shows that if Ĝ(s) is realizable, then it is a proper rational matrix. Note that we have

Ĝ(∞) = D

Next we show the converse; that is, if Ĝ(s) is a q × p proper rational matrix, then there
exists a realization. First we decompose Ĝ(s) as

Ĝ(s) = Ĝ(∞) + Ĝsp(s) (4.31)

where Ĝsp is the strictly proper part of Ĝ(s). Let

d(s) = sr + α1s
r−1 + · · · + αr−1s + αr (4.32)

be the least common denominator of all entries of Ĝsp(s). Here we require d(s) to be monic;
that is, its leading coefficient is 1. Then Ĝsp(s) can be expressed as

Ĝsp(s) = 1

d(s)
[N(s)] = 1

d(s)

[
N1s

r−1 + N2s
r−2 + · · · + Nr−1s + Nr

]
(4.33)

where Ni are q × p constant matrices. Now we claim that the set of equations

ẋ =




−α1Ip −α2Ip · · · −αr−1Ip −αrIp

Ip 0 · · · 0 0
0 Ip · · · 0 0
...

...
...

...

0 0 · · · Ip 0




x +




Ip

0
0
...

0


u

y = [N1 N2 · · · Nr−1 Nr

]
x + Ĝ(∞)u

(4.34)

102 STATE-SPACE SOLUTIONS AND REALIZATIONS

is a realization of Ĝ(s). The matrix Ip is the p×p unit matrix and every 0 is a p×p zero matrix.
The A-matrix is said to be in block companion form; it consists of r rows and r columns of
p ×p matrices; thus the A-matrix has order rp × rp. The B-matrix has order rp ×p. Because
the C-matrix consists of r number of Ni , each of order q × p, the C-matrix has order q × rp.
The realization has dimension rp and is said to be in controllable canonical form.

We show that (4.34) is a realization of Ĝ(s) in (4.31) and (4.33). Let us define

Z :=




Z1

Z2

...

Zr


 := (sI − A)−1B (4.35)

where Zi is p × p and Z is rp × p. Then the transfer matrix of (4.34) equals

C(sI − A)−1B + Ĝ(∞) = N1Z1 + N2Z2 + · · · + NrZr + Ĝ(∞) (4.36)

We write (4.35) as (sI − A)Z = B or

sZ = AZ + B (4.37)

Using the shifting property of the companion form of A, from the second to the last block of
equations in (4.37), we can readily obtain

sZ2 = Z1, sZ3 = Z2, · · · , sZr = Zr−1

which implies

Z2 = 1

s
Z1, Z3 = 1

s2
Z1, · · · , Zr = 1

sr−1
Z1

Substituting these into the first block of equations in (4.37) yields

sZ1 = −α1Z1 − α2Z2 − · · · − αrZr + Ip

= −
(
α1 + α2

s
+ · · · + αr

sr−1

)
Z1 + Ip

or, using (4.32), (
s + α1 + α2

s
+ · · · + αr

sr−1

)
Z1 = d(s)

sr−1
Z1 = Ip

Thus we have

Z1 = sr−1

d(s)
Ip, Z2 = sr−2

d(s)
Ip, · · · , Zr = 1

d(s)
Ip

Substituting these into (4.36) yields

C(sI − A)−1B + Ĝ(∞) = 1

d(s)
[N1s

r−1 + N2s
r−2 + · · · + Nr] + Ĝ(∞)

This equals Ĝ(s) in (4.31) and (4.33). This shows that (4.34) is a realization of Ĝ(s).

4.4 Realizations 103

Example 4.6 Consider the proper rational matrix

Ĝ(s) =



4s − 10

2s + 1

3

s + 2
1

(2s + 1)(s + 2)

s + 1

(s + 2)2




=
[

2 0

0 0

]
+



−12

2s + 1

3

s + 2
1

(2s + 1)(s + 2)

s + 1

(s + 2)2




(4.38)

where we have decomposed Ĝ(s) into the sum of a constant matrix and a strictly proper rational
matrix Ĝsp(s). The monic least common denominator of Ĝsp(s) is d(s) = (s +0.5)(s +2)2 =
s3 + 4.5s2 + 6s + 2. Thus we have

Ĝsp(s) = 1

s3 + 4.5s2 + 6s + 2

[−6(s + 2)2 3(s + 2)(s + 0.5)

0.5(s + 2) (s + 1)(s + 0.5)

]

= 1

d(s)

([−6 3

0 1

]
s2 +

[−24 7.5

0.5 1.5

]
s +

[−24 3

1 0.5

])

and a realization of (4.38) is

ẋ =




−4.5 0
... −6 0

... −2 0

0 −4.5
... 0 −6

... 0 −2

· ·
1 0

... 0 0
... 0 0

0 1
... 0 0

... 0 0

· ·
0 0

... 1 0
... 0 0

0 0
... 0 1

... 0 0




x +




1 0

0 1

· · · · · ·
0 0

0 0

· · · · · ·
0 0

0 0




[
u1

u2

]

y =
[

−6 3
... −24 7.5

... −24 3

0 1
... 0.5 1.5

... 1 0.5

]
x +

[
2 0

0 0

] [
u1

u2

]
(4.39)

This is a six-dimensional realization.

We discuss a special case of (4.31) and (4.34) in which p = 1. To save space, we assume
r = 4 and q = 2. However, the discussion applies to any positive integers r and q. Consider
the 2 × 1 proper rational matrix

Ĝ(s) =
[

d1

d2

]
+ 1

s4 + α1s3 + α2s2 + α3s + α4

·
[

β11s
3 + β12s

2 + β13s + β14

β21s
3 + β22s

2 + β23s + β24

]
(4.40)

104 STATE-SPACE SOLUTIONS AND REALIZATIONS

Then its realization can be obtained directly from (4.34) as

ẋ =




−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0


 x +




1

0

0

0


 u

y =
[

β11 β12 β13 β14

β21 β22 β23 β24

]
x +

[
d1

d2

]
u

(4.41)

This controllable-canonical-form realization can be read out from the coefficients of Ĝ(s) in
(4.40).

There are many ways to realize a proper transfer matrix. For example, Problem 4.9
gives a different realization of (4.33) with dimension rq. Let Ĝci(s) be the ith column of
Ĝ(s) and let ui be the ith component of the input vector u. Then ŷ(s) = Ĝ(s)û(s) can be
expressed as

ŷ(s) = Ĝc1(s)û1(s) + Ĝc2(s)û2(s) + · · · =: ŷc1(s) + ŷc2(s) + · · ·
as shown in Fig. 4.4(a). Thus we can realize each column of Ĝ(s) and then combine them to
yield a realization of Ĝ(s). Let Ĝri(s) be the ith row of Ĝ(s) and let yi be the ith component
of the output vector y. Then ŷ(s) = Ĝ(s)û(s) can be expressed as

ŷi (s) = Ĝri(s)û(s)

as shown in Fig. 4.4(b). Thus we can realize each row of Ĝ(s) and then combine them to obtain
a realization of Ĝ(s). Clearly we can also realize each entry of Ĝ(s) and then combine them
to obtain a realization of Ĝ(s). See Reference [6, pp. 158–160].

The MATLAB function [a,b,c,d]=tf2ss(num,den) generates the controllable-
canonical-form realization shown in (4.41) for any single-input multiple-output transfer matrix
Ĝ(s). In its employment, there is no need to decompose Ĝ(s) as in (4.31). But we must compute
its least common denominator, not necessarily monic. The next example will apply tf2ss to
each column of Ĝ(s) in (4.38) and then combine them to form a realization of Ĝ(s).

Figure 4.4 Realizations of Ĝ(s) by
columns and by rows.

4.4 Realizations 105

Example 4.7 Consider the proper rational matrix in (4.38). Its first column is

Ĝc1(s) =



4s − 10

2s + 1
1

(2s + 1)(s + 2)


 =




(4s − 10)(s + 2)

(2s + 1)(s + 2)

1

2s2 + 5s + 2


 =




4s2 − 2s − 20

2s2 + 5s + 2
1

2s2 + 5s + 2




Typing

n1=[4 -2 -20;0 0 1];d1=[2 5 2]; [a,b,c,d]=tf2ss(n1,d1)

yields the following realization for the first column of Ĝ(s):

ẋ1 = A1x1 + b1u1 =
[−2.5 −1

1 0

]
x1 +

[
1

0

]
u1

yc1 = C1x1 + d1u1 =
[−6 −12

0 0.5

]
x1 +

[
2

0

]
u1

(4.42)

Similarly, the function tf2ss can generate the following realization for the second column
of Ĝ(s):

ẋ2 = A2x2 + b2u2 =
[−4 −4

1 0

]
x2 +

[
1

0

]
u2

yc2 = C2x2 + d2u2 =
[

3 6

1 1

]
x2 +

[
0

0

]
u2

(4.43)

These two realizations can be combined as[
ẋ1

ẋ2

]
=
[

A1 0
0 A2

] [
x1

x2

]
+
[

b1 0
0 b2

] [
u1

u2

]
y = yc1 + yc2 = [C1 C2]x + [d1 d2]u

or

ẋ =




−2.5 −1 0 0

1 0 0 0

0 0 −4 −4

0 0 1 0


 x +




1 0

0 0

0 1

0 0


u

y =
[−6 −12 3 6

0 0.5 1 1

]
x +

[
2 0

0 0

]
u

(4.44)

This is a different realization of the Ĝ(s) in (4.38). This realization has dimension 4, two less
than the one in (4.39).

The two state equations in (4.39) and (4.44) are zero-state equivalent because they have
the same transfer matrix. They are, however, not algebraically equivalent. More will be said

106 STATE-SPACE SOLUTIONS AND REALIZATIONS

in Chapter 7 regarding realizations. We mention that all discussion in this section, including
tf2ss, applies without any modification to the discrete-time case

4.5 Solution of Linear Time-Varying (LTV) Equations

Consider the linear time-varying (LTV) state equation

ẋ(t) = A(t)x(t) + B(t)u(t) (4.45)

y(t) = C(t)x(t) + D(t)u(t) (4.46)

It is assumed that, for every initial state x(t0) and any input u(t), the state equation has a
unique solution. A sufficient condition for such an assumption is that every entry of A(t) is a
continuous function of t . Before considering the general case, we first discuss the solutions of
ẋ(t) = A(t)x(t) and the reasons why the approach taken in the time-invariant case cannot be
used here.

The solution of the time-invariant equation ẋ = Ax can be extended from the scalar
equation ẋ = ax. The solution of ẋ = ax is x(t) = eatx(0) with d(eat)/dt = aeat = eata.
Similarly, the solution of ẋ = Ax is x(t) = eAtx(0) with

d

dt
eAt = AeAt = eAtA

where the commutative property is crucial. Note that, in general, we have AB �= BA and
e(A+B)t �= eAt eBt .

The solution of the scalar time-varying equation ẋ = a(t)x due to x(0) is

x(t) = e

∫ t

0
a(τ)dτ

x(0)

with

d

dt
e

∫ t

0
a(τ)dτ = a(t)e

∫ t

0
a(τ)dτ = e

∫ t

0
a(τ)dτ

a(t)

Extending this to the matrix case becomes

x(t) = e

∫ t

0
A(τ)dτ x(0) (4.47)

with, using (3.51),

e

∫ t

0
A(τ)dτ = I +

∫ t

0
A(τ)dτ + 1

2

(∫ t

0
A(τ)dτ

)(∫ t

0
A(s)ds

)
+ · · ·

This extension, however, is not valid because

d

dt
e

∫ t

0
A(τ)dτ = A(t) + 1

2
A(t)

(∫ t

0
A(s)ds

)
+ 1

2

(∫ t

0
A(τ)dτ

)
A(t) + · · ·

�= A(t)e

∫ t

0
A(τ)dτ (4.48)

Thus, in general, (4.47) is not a solution of ẋ = A(t)x. In conclusion, we cannot extend the

4.5 Solution of Linear Time-Varying (LTV) Equations 107

solution of scalar time-varying equations to the matrix case and must use a different approach
to develop the solution.

Consider

ẋ = A(t)x (4.49)

where A is n×n with continuous functions of t as its entries. Then for every initial state xi (t0),
there exists a unique solution xi (t), for i = 1, 2, . . . , n. We can arrange these n solutions as
X = [x1 x2 · · · xn], a square matrix of order n. Because every xi satisfies (4.49), we have

Ẋ(t) = A(t)X(t) (4.50)

If X(t0) is nonsingular or the n initial states are linearly independent, then X(t) is called a
fundamental matrix of (4.49). Because the initial states can arbitrarily be chosen, as long as
they are linearly independent, the fundamental matrix is not unique.

Example 4.8 Consider the homogeneous equation

ẋ(t) =
[

0 0

t 0

]
x(t) (4.51)

or

ẋ1(t) = 0 ẋ2(t) = tx1(t)

The solution of ẋ1(t) = 0 for t0 = 0 is x1(t) = x1(0); the solution of ẋ2(t) = tx1(t) = tx1(0)

is

x2(t) =
∫ t

0
τx1(0)dτ + x2(0) = 0.5t2x1(0) + x2(0)

Thus we have

x(0) =
[

x1(0)

x2(0)

]
=
[

1

0

]
⇒ x(t) =

[
1

0.5t2

]

and

x(0) =
[

x1(0)

x2(0)

]
=
[

1

2

]
⇒ x(t) =

[
1

0.5t2 + 2

]

The two initial states are linearly independent; thus

X(t) =
[

1 1

0.5t2 0.5t2 + 2

]
(4.52)

is a fundamental matrix.

A very important property of the fundamental matrix is that X(t) is nonsingular for all t .
For example, X(t) in (4.52) has determinant 0.5t2 + 2 − 0.5t2 = 2; thus it is nonsingular for
all t . We argue intuitively why this is the case. If X(t) is singular at some t1, then there exists
a nonzero vector v such that x(t1) := X(t1)v = 0, which, in turn, implies x(t) := X(t)v ≡ 0
for all t , in particular, at = t0. This is a contradiction. Thus X(t) is nonsingular for all t .

108 STATE-SPACE SOLUTIONS AND REALIZATIONS

Definition 4.2 Let X(t) be any fundamental matrix of ẋ = A(t)x. Then

�(t, t0) := X(t)X−1(t0)

is called the state transition matrix of ẋ = A(t)x. The state transition matrix is also the
unique solution of

∂

∂t
�(t, t0) = A(t)�(t, t0) (4.53)

with the initial condition �(t0, t0) = I.

Because X(t) is nonsingular for all t , its inverse is well defined. Equation (4.53) follows
directly from (4.50). From the definition, we have the following important properties of the
state transition matrix:

�(t, t) = I (4.54)

�−1(t, t0) = [X(t)X−1(t0)]
−1 = X(t0)X−1(t) = �(t0, t) (4.55)

�(t, t0) = �(t, t1)�(t1, t0) (4.56)

for every t, t0, and t1.

Example 4.9 Consider the homogeneous equation in Example 4.8. Its fundamental matrix
was computed as

X(t) =
[

1 1

0.5t2 0.5t2 + 2

]

Its inverse is, using (3.20),

X−1(t) =
[

0.25t2 + 1 −0.5

−0.25t2 0.5

]

Thus the state transition matrix is given by

�(t, t0) =
[

1 1

0.5t2 0.5t2 + 2

] [
0.25t2

0 + 1 −0.5

−0.25t2
0 0.5

]

=
[

1 0

0.5(t2 − t2
0) 1

]

It is straightforward to verify that this transition matrix satisfies (4.53) and has the three
properties listed in (4.54) through (4.56).

Now we claim that the solution of (4.45) excited by the initial state x(t0) = x0 and the
input u(t) is given by

x(t) = �(t, t0)x0 +
∫ t

t0

�(t, τ)B(τ)u(τ) dτ (4.57)

= �(t, t0)

[
x0 +

∫ t

t0

�(t0, τ)B(τ)u(τ) dτ

]
(4.58)

4.5 Solution of Linear Time-Varying (LTV) Equations 109

where �(t, τ) is the state transition matrix of ẋ = A(t)x. Equation (4.58) follows from (4.57)
by using �(t, τ) = �(t, t0)�(t0, τ). We show that (4.57) satisfies the initial condition and the
state equation. At t = t0, we have

x(t0) = �(t0, t0)x0 +
∫ t0

t0

�(t, τ)B(τ)u(τ) dτ = Ix0 + 0 = x0

Thus (4.57) satisfies the initial condition. Using (4.53) and (4.6), we have

d

dt
x(t) = ∂

∂t
�(t, t0)x0 + ∂

∂t

∫ t

t0

�(t, τ)B(τ)u(τ) dτ

= A(t)�(t, t0)x0 +
∫ t

t0

(
∂

∂t
�(t, τ)B(τ)

)
dτ + �(t, t)B(t)u(t)

= A(t)�(t, t0)x0 +
∫ t

t0

A(t)�(t, τ)B(τ)u(τ) dτ + B(t)u(t)

= A(t)

[
�(t, t0)x0 +

∫ t

t0

�(t, τ)B(τ)u(τ) dτ

]
+ B(t)u(t)

= A(t)x(t) + B(t)u(t)

Thus (4.57) is the solution. Substituting (4.57) into (4.46) yields

y(t) = C(t)�(t, t0)x0 + C(t)

∫ t

t0

�(t, τ)B(τ)u(τ) dτ + D(t)u(t) (4.59)

If the input is identically zero, then Equation (4.57) reduces to

x(t) = �(t, t0)x0

This is the zero-input response. Thus the state transition matrix governs the unforced propa-
gation of the state vector. If the initial state is zero, then (4.59) reduces to

y(t) = C(t)

∫ t

t0

�(t, τ)B(τ)u(τ) dτ + D(t)u(t)

=
∫ t

t0

[C(t)�(t, τ)B(τ) + Dδ(t − τ)] u(τ) dτ (4.60)

This is the zero-state response. As discussed in (2.5), the zero-state response can be described by

y(t) =
∫ t

t0

G(t, τ)u(τ) dτ (4.61)

where G(t, τ) is the impulse response matrix and is the output at time t excited by an impulse
input applied at time τ . Comparing (4.60) and (4.61) yields

G(t, τ) = C(t)�(t, τ)B(τ) + D(t)δ(t − τ)

= C(t)X(t)X−1(τ)B(τ) + D(t)δ(t − τ) (4.62)

This relates the input–output and state-space descriptions.

110 STATE-SPACE SOLUTIONS AND REALIZATIONS

The solutions in (4.57) and (4.59) hinge on solving (4.49) or (4.53). If A(t) is triangular
such as [

ẋ1(t)

ẋ2(t)

]
=
[

a11(t) 0

a21(t) a22(t)

] [
x1(t)

x2(t)

]

we can solve the scalar equation ẋ1(t) = a11(t)x1(t) and then substitute it into

ẋ2(t) = a22(t)x2(t) + a21(t)x1(t)

Because x1(t) has been solved, the preceding scalar equation can be solved for x2(t). This is
what we did in Example 4.8. If A(t), such as A(t) diagonal or constant, has the commutative
property

A(t)

(∫ t

t0

A(τ) dτ

)
=
(∫ t

t0

A(τ) dτ

)
A(t)

for all t0 and t , then the solution of (4.53) can be shown to be

�(t, t0) = e

∫ t

t0
A(τ) dτ =

∞∑
k=0

1

k!

(∫ t

t0

A(τ) dτ

)k

(4.63)

For A(t) constant, (4.63) reduces to

�(t, τ) = eA(t−τ) = �(t − τ)

and X(t) = eAt . Other than the preceding special cases, computing state transition matrices is
generally difficult.

4.5.1 Discrete-Time Case

Consider the discrete-time state equation

x[k + 1] = A[k]x[k] + B[k]u[k] (4.64)

y[k] = C[k]x[k] + D[k]u[k] (4.65)

The set consists of algebraic equations and their solutions can be computed recursively once
the initial state x[k0] and the input u[k], for k ≥ k0, are given. The situation here is much
simpler than the continuous-time case.

As in the continuous-time case, we can define the discrete state transition matrix as the
solution of

�[k + 1, k0] = A[k]�[k, k0] with �[k0, k0] = I

for k = k0, k0 + 1, This is the discrete counterpart of (4.53) and its solution can be
obtained directly as

�[k, k0] = A[k − 1]A[k − 2] · · · A[k0] (4.66)

for k > k0 and �[k0, k0] = I. We discuss a significant difference between the continuous- and
discrete-time cases. Because the fundamental matrix in the continuous-time case is nonsingular

4.6 Equivalent Time-Varying Equations 111

for all t , the state transition matrix �(t, t0) is defined for t ≥ t0 and t < t0 and can govern the
propagation of the state vector in the positive-time and negative-time directions. In the discrete-
time case, the A-matrix can be singular; thus the inverse of �[k, k0] may not be defined. Thus
�[k, k0] is defined only for k ≥ k0 and governs the propagation of the state vector in only the
positive-time direction. Therefore the discrete counterpart of (4.56) or

�[k, k0] = �[k, k1]�[k1, k0]

holds only for k ≥ k1 ≥ k0.
Using the discrete state transition matrix, we can express the solutions of (4.64) and (4.65)

as, for k > k0,

x[k] = �[k, k0]x0 +
k−1∑

m=k0

�[k, m + 1]B[m]u[m]

y[k] = C[k]�[k, k0]x0 + C[k]
k−1∑

m=k0

�[k, m + 1]B[m]u[m] + D[k]u[k]

(4.67)

Their derivations are similar to those of (4.20) and (4.21) and will not be repeated.
If the initial state is zero, Equation (4.67) reduces to

y[k] = C[k]
k−1∑

m=k0

�[k, m + 1]B[m]u[m] + D[k]u[k] (4.68)

for k > k0. This describes the zero-state response of (4.65). If we define �[k, m] = 0 for
k < m, then (4.68) can be written as

y[k] =
k∑

m=k0

(C[k]�[k, m + 1]B[m] + D[m]δ[k − m]) u[m]

where the impulse sequence δ[k − m] equals 1 if k = m and 0 if k �= m. Comparing this with
the multivariable version of (2.34), we have

G[k, m] = C[k]�[k, m + 1]B[m] + D[m]δ[k − m]

for k ≥ m. This relates the impulse response sequence and the state equation and is the discrete
counterpart of (4.62).

4.6 Equivalent Time-Varying Equations

This section extends the equivalent state equations discussed in Section 4.3 to the time-varying
case. Consider the n-dimensional linear time-varying state equation

ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
(4.69)

112 STATE-SPACE SOLUTIONS AND REALIZATIONS

Let P(t) be an n × n matrix. It is assumed that P(t) is nonsingular and both P(t) and Ṗ(t) are
continuous for all t . Let x̄ = P(t)x. Then the state equation

˙̄x = Ā(t)x̄ + B̄(t)u

y = C̄(t)x̄ + D̄(t)u
(4.70)

where

Ā(t) = [P(t)A(t) + Ṗ(t)]P−1(t)

B̄(t) = P(t)B(t)

C̄(t) = C(t)P−1(t)

D̄(t) = D(t)

is said to be (algebraically) equivalent to (4.69) and P(t) is called an (algebraic) equivalence
transformation.

Equation (4.70) is obtained from (4.69) by substituting x̄ = P(t)x and ˙̄x = Ṗ(t)x+P(t)ẋ.
Let X be a fundamental matrix of (4.69). Then we claim that

X̄(t) := P(t)X(t) (4.71)

is a fundamental matrix of (4.70). By definition, Ẋ(t) = A(t)X(t) and X(t) is nonsingular for
all t . Because the rank of a matrix will not change by multiplying a nonsingular matrix, the
matrix P(t)X(t) is also nonsingular for all t . Now we show that P(t)X(t) satisfies the equation
˙̄x = Ā(t)x̄. Indeed, we have

d

dt
[P(t)X(t)] = Ṗ(t)X(t) + P(t)Ẋ(t) = Ṗ(t)X(t) + P(t)A(t)X(t)

= [Ṗ(t) + P(t)A(t)][P−1(t)P(t)]X(t) = Ā(t)[P(t)X(t)]

Thus P(t)X(t) is a fundamental matrix of ˙̄x(t)= Ā(t)x̄(t).

� Theorem 4.3

Let Ao be an arbitrary constant matrix. Then there exists an equivalence transformation that transforms
(4.69) into (4.70) with Ā(t) = Ao.

Proof: Let X(t) be a fundamental matrix of ẋ = A(t)x. The differentiation of X−1(t)

X(t) = I yields

Ẋ
−1

(t)X(t) + X−1Ẋ(t) = 0

which implies

Ẋ
−1

(t) = −X−1(t)A(t)X(t)X−1(t) = −X−1(t)A(t) (4.72)

Because Ā(t) = Ao is a constant matrix, X̄(t) = eAot is a fundamental matrix of
˙̄x = Ā(t)x̄ = Aox̄. Following (4.71), we define

P(t) := X̄(t)X−1(t) = eAotX−1(t) (4.73)

4.6 Equivalent Time-Varying Equations 113

and compute

Ā(t) = [P(t)A(t) + Ṗ(t)]P−1(t)

= [eAotX−1(t)A(t) + Aoe
AotX−1(t) + eAot Ẋ

−1
(t)]X(t)e−Aot

which becomes, after substituting (4.72),

Ā(t) = Aoe
AotX−1(t)X(t)e−Aot = Ao

This establishes the theorem. Q.E.D.

If Ao is chosen as a zero matrix, then P(t) = X−1(t) and (4.70) reduces to

Ā(t) = 0 B̄(t) = X−1(t)B(t) C̄(t) = C(t)X(t) D̄(t) = D(t) (4.74)

The block diagrams of (4.69) with A(t) �= 0 and A(t) = 0 are plotted in Fig. 4.5. The block
diagram with A(t) = 0 has no feedback and is considerably simpler. Every time-varying state
equation can be transformed into such a block diagram. However, in order to do so, we must
know its fundamental matrix.

The impulse response matrix of (4.69) is given in (4.62). The impulse response matrix of
(4.70) is, using (4.71) and (4.72),

Ḡ(t, τ) = C̄(t)X̄(t)X̄
−1

(τ)B̄(τ) + D̄(t)δ(t − τ)

Figure 4.5 Block daigrams with feedback and without feedback.

114 STATE-SPACE SOLUTIONS AND REALIZATIONS

= C(t)P−1(t)P(t)X(t)X−1(τ)P−1(τ)P(τ)B(τ) + D(t)δ(t − τ)

= C(t)X(t)X−1(τ)B(τ) + D(t)δ(t − τ) = G(t, τ)

Thus the impulse response matrix is invariant under any equivalence transformation. The
property of the A-matrix, however, may not be preserved in equivalence transformations. For
example, every A-matrix can be transformed, as shown in Theorem 4.3, into a constant or a
zero matrix. Clearly the zero matrix does not have any property of A(t). In the time-invariant
case, equivalence transformations will preserve all properties of the original state equation.
Thus the equivalence transformation in the time-invariant case is not a special case of the
time-varying case.

Definition 4.3 A matrix P(t) is called a Lyapunov transformation if P(t) is nonsingular,
P(t) and Ṗ(t) are continuous, and P(t) and P−1(t) are bounded for all t . Equations (4.69)
and (4.70) are said to be Lyapunov equivalent if P(t) is a Lyapunov transformation.

It is clear that if P(t) = P is a constant matrix, then it is a Lyapunov transformation. Thus
the (algebraic) transformation in the time-invariant case is a special case of the Lyapunov
transformation. If P(t) is required to be a Lyapunov transformation, then Theorem 4.3 does
not hold in general. In other words, not every time-varying state equation can be Lyapunov
equivalent to a state equation with a constant A-matrix. However, this is true if A(t) is periodic.

Periodic state equations Consider the linear time-varying state equation in (4.69). It is
assumed that

A(t + T) = A(t)

for all t and for some positive constant T . That is, A(t) is periodic with period T . Let X(t) be
a fundamental matrix of ẋ = A(t)x or Ẋ(t) = A(t)X(t) with X(0) nonsingular. Then we have

Ẋ(t + T) = A(t + T)X(t + T) = A(t)X(t + T)

Thus X(t + T) is also a fundamental matrix. Furthermore, it can be expressed as

X(t + T) = X(t)X−1(0)X(T) (4.75)

This can be verified by direct substitution. Let us define Q = X−1(0)X(T). It is a constant
nonsingular matrix. For this Q there exists a constant matrix Ā such that eĀT = Q (Problem
3.24). Thus (4.75) can be written as

X(t + T) = X(t)eĀT (4.76)

Define

P(t) := eĀtX−1(t) (4.77)

We show that P(t) is periodic with period T :

P(t + T) = eĀ(t+T)X−1(t + T) = eĀt eĀT [e−ĀT X−1(t)]

= eĀtX−1(t) = P(t)

4.7 Time-Varying Realizations 115

� Theorem 4.4

Consider (4.69) with A(t) = A(t + T) for all t and some T > 0. Let X(t) be a fundamental matrix

of ẋ = A(t)x. Let Ā be the constant matrix computed from eĀT = X−1(0)X(T). Then (4.69) is
Lyapunov equivalent to

˙̄x(t) = Āx̄(t) + P(t)B(t)u(t)

ȳ(t) = C(t)P−1(t)x̄(t) + D(t)u(t)

where P(t) = eĀtX−1(t).

The matrix P(t) in (4.77) satisfies all conditions in Definition 4.3; thus it is a Lyapunov
transformation. The rest of the theorem follows directly from Theorem 4.3. The homogeneous
part of Theorem 4.4 is the theory of Floquet. It states that if ẋ = A(t)x and if A(t +T) = A(t)

for all t , then its fundamental matrix is of the form P−1(t)eĀt , where P−1(t) is a periodic
function. Furthermore, ẋ = A(t)x is Lyapunov equivalent to ˙̄x = Āx̄.

4.7 Time-Varying Realizations

We studied in Section 4.4 the realization problem for linear time-invariant systems. In this
section, we study the corresponding problem for linear time-varying systems. The Laplace
transform cannot be used here; therefore we study the problem directly in the time domain.

Every linear time-varying system can be described by the input–output description

y(t) =
∫ t

t0

G(t, τ)u(τ) dτ

and, if the system is lumped as well, by the state equation

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(4.78)

If the state equation is available, the impulse response matrix can be computed from

G(t, τ) = C(t)X(t)X−1(τ)B(τ) + D(t)δ(t − τ) for t ≥ τ (4.79)

where X(t) is a fundamental matrix of ẋ = A(t)x. The converse problem is to find a state
equation from a given impulse response matrix. An impulse response matrix G(t, τ) is said to
be realizable if there exists {A(t), B(t), C(t), D(t)} to meet (4.79).

� Theorem 4.5

A q × p impulse response matrix G(t, τ) is realizable if and only if G(t, τ) can be decomposed as

G(t, τ) = M(t)N(τ) + D(t)δ(t − τ) (4.80)

for all t ≥ τ , where M, N, and D are, respectively, q × n, n × p, and q × p matrices for some
integer n.

116 STATE-SPACE SOLUTIONS AND REALIZATIONS

Proof: If G(t, τ) is realizable, there exists a realization that meets (4.79). Identifying
M(t) = C(t)X(t) and N(τ) = X−1(τ)B(τ) establishes the necessary part of the theorem.

If G(t, τ) can be decomposed as in (4.80), then the n-dimensional state equation

ẋ(t) = N(t)u(t)

y(t) = M(t)x(t) + D(t)u(t)
(4.81)

is a realization. Indeed, a fundamental matrix of ẋ = 0 · x is X(t) = I. Thus the impulse
response matrix of (4.81) is

M(t)I · I−1N(τ) + D(t)δ(t − τ)

which equals G(t, τ). This shows the sufficiency of the theorem. Q.E.D.

Although Theorem 4.5 can also be applied to time-invariant systems, the result is not
useful in practical implementation, as the next example illustrates.

Example 4.10 Consider g(t) = teλt or

g(t, τ) = g(t − τ) = (t − τ)eλ(t−τ)

It is straightforward to verify

g(t − τ) = [eλt teλt]

[−τe−λτ

e−λτ

]

Thus the two-dimensional time-varying state equation

ẋ(t) =
[

0 0

0 0

]
x +

[−te−λt

e−λt

]
u(t)

y(t) = [eλt teλt]x(t)

(4.82)

is a realization of the impulse response g(t) = teλt .
The Laplace transform of the impulse response is

ĝ(s) = L[teλt] = 1

(s − λ)2
= 1

s2 − 2λs + λ2

Using (4.41), we can readily obtain

ẋ(t) =
[

2λ −λ2

1 0

]
x(t) +

[
1

0

]
u(t)

y(t) = [0 1]x(t)

(4.83)

This LTI state equation is a different realization of the same impulse response.This realization
is clearly more desirable because it can readily be implemented using an op-amp circuit. The
implementation of (4.82) is much more difficult in practice.

Problems 117

PROBLEMS
4.1 An oscillation can be generated by

ẋ =
[

0 1

−1 0

]
x

Show that its solution is

x(t) =
[

cos t sin t

− sin t cos t

]
x(0)

4.2 Use two different methods to find the unit-step response of

ẋ =
[

0 1

−2 −2

]
x +

[
1

1

]
u

y = [2 3]x

4.3 Discretize the state equation in Problem 4.2 for T = 1 and T = π .

4.4 Find the companion-form and modal-form equivalent equations of

ẋ =

−2 0 0

1 0 1

0 −2 −2


 x +


 1

0

1


 u

y = [1 − 1 0]x

4.5 Find an equivalent state equation of the equation in Problem 4.4 so that all state variables
have their largest magnitudes roughly equal to the largest magnitude of the output. If
all signals are required to lie inside ±10 volts and if the input is a step function with
magnitude a, what is the permissible largest a?

4.6 Consider

ẋ =
[

λ 0

0 λ̄

]
x +

[
b1

b̄1

]
u y = [c1 c̄1]x

where the overbar denotes complex conjugate. Verify that the equation can be trans-
formed into

˙̄x = Āx̄ + b̄u y = c̄x̄

with

Ā =
[

0 1

−λλ̄ λ + λ̄

]
b̄ =

[
0

1

]
c̄ = [−2Re(λ̄b1c1) 2Re(b1c1)]

by using the transformation x = Qx̄ with

Q =
[−λ̄b1 b1

−λb̄1 b̄1

]

4.7 Verify that the Jordan-form equation

118 STATE-SPACE SOLUTIONS AND REALIZATIONS

ẋ =




λ 1 0 0 0 0

0 λ 1 0 0 0

0 0 λ 0 0 0

0 0 0 λ̄ 1 0

0 0 0 0 λ̄ 1

0 0 0 0 0 λ̄




x +




b1

b2

b3

b̄1

b̄2

b̄3




u

y = [c1 c2 c3 c̄1 c̄2 c̄3]x

can be transformed into

˙̄x =

 Ā I2 0

0 Ā I2

0 0 Ā


 x̄ +


 b̄

b̄
b̄


 u y = [c̄1 c̄2 c̄3]x̄

where Ā, b̄, and c̄i are defined in Problem 4.6 and I2 is the unit matrix of order 2. [Hint:
Change the order of the state variables from [x1 x2 x3 x4 x5 x6]′ to [x1 x4 x2 x5

x3 x6]′ and then apply the equivalence transformation x = Qx̄ with Q = diag(Q1,

Q2, Q3).]

4.8 Are the two sets of state equations

ẋ =

 2 1 2

0 2 2

0 0 1


 x +


 1

1

0


 u y = [1 −1 0]x

and

ẋ =

 2 1 1

0 2 1

0 0 −1


 x +


 1

1

0


 u y = [1 −1 0]x

equivalent? Are they zero-state equivalent?

4.9 Verify that the transfer matrix in (4.33) has the following realization:

ẋ =




−α1Iq Iq 0 · · · 0
−α2Iq 0 Iq · · · 0

...
...

...
...

−αr−1Iq 0 0 · · · Iq

−αrIq 0 0 · · · 0




x +




N1

N2

...

Nr−1

Nr


u

y = [Iq 0 0 · · · 0]x

This is called the observable canonical form realization and has dimension rq. It is dual
to (4.34).

4.10 Consider the 1 × 2 proper rational matrix

Ĝ(s) = [d1 d2] + 1

s4 + α1s3 + α2s2 + α3s + α4

Problems 119

× [β11s
3 + β21s

2 + β31s + β41 β12s
3 + β22s

2 + β32s + β42]

Show that its observable canonical form realization can be deduced from Problem 4.9 as

ẋ =




−α1 1 0 0

−α2 0 1 0

−α3 0 0 1

−α4 0 0 0


 x +




β11 β12

β21 β22

β31 β32

β41 β42


u

y = [1 0 0 0]x + [d1 d2]u

4.11 Find a realization for the proper rational matrix

Ĝ(s) =



2

s + 1

2s − 3

(s + 1)(s + 2)

s − 2

s + 1

s

s + 2




4.12 Find a realization for each column of Ĝ(s) in Problem 4.11 and then connect them,
as shown in Fig. 4.4(a), to obtain a realization of Ĝ(s). What is the dimension of this
realization? Compare this dimension with the one in Problem 4.11.

4.13 Find a realization for each row of Ĝ(s) in Problem 4.11 and then connect them, as shown
in Fig. 4.4(b), to obtain a realization of Ĝ(s). What is the dimension of this realization?
Compare this dimension with the ones in Problems 4.11 and 4.12.

4.14 Find a realization for

Ĝ(s) =
[−(12s + 6)

3s + 34

22s + 23

3s + 34

]

4.15 Consider the n-dimensional state equation

ẋ = Ax + bu y = cx

Let ĝ(s) be its transfer function. Show that ĝ(s) has m zeros or, equivalently, the
numerator of ĝ(s) has degree m if and only if

cAib = 0 for i = 0, 1, 2, . . . , n − m − 2

and cAn−m−1b �= 0. Or, equivalently, the difference between the degrees of the denom-
inator and numerator of ĝ(s) is α = n − m if and only if

cAα−1b �= 0 and cAib = 0

for i = 0, 1, 2, . . . , α − 2.

4.16 Find fundamental matrices and state transition matrices for

ẋ =
[

0 1

0 t

]
x

120 STATE-SPACE SOLUTIONS AND REALIZATIONS

and

ẋ =
[−1 e2t

0 −1

]
x

4.17 Show ∂�(t0, t)/∂t = −�(t0, t)A(t).

4.18 Given

A(t) =
[

a11(t) a12(t)

a21(t) a22(t)

]

show

det �(t, t0) = exp

[∫ t

t0

(a11(τ) + a22(τ)) dτ

]

4.19 Let

�(t, t0) =
[

�11(t, t0) �12(t, t0)

�21(t, t0) �22(t, t0)

]

be the state transition matrix of

ẋ(t) =
[

A11(t) A12(t)

0 A22(t)

]
x(t)

Show that �21(t, t0) = 0 for all t and t0 and that (∂/∂t)�ii (t, t0) = Aii�ii (t, t0), for
i = 1, 2.

4.20 Find the state transition matrix of

ẋ =
[− sin t 0

0 − cos t

]
x

4.21 Verify that X(t) = eAtCeBt is the solution of

Ẋ = AX + XB X(0) = C

4.22 Show that if Ȧ(t) = A1A(t) − A(t)A1, then

A(t) = eA1tA(0)e−A1t

Show also that the eigenvalues of A(t) are independent of t .

4.23 Find an equivalent time-invariant state equation of the equation in Problem 4.20.

4.24 Transform a time-invariant (A, B, C) into (0, B̄(t), C̄(t)) by a time-varying equivalence
transformation.

4.25 Find a time-varying realization and a time-invariant realization of the impulse response
g(t) = t2eλt .

4.26 Find a realization of g(t, τ) = sin t (e−(t−τ)) cos τ . Is it possible to find a time-invariant
state equation realization?

Chapter

5
Stability

5.1 Introduction

Systems are designed to perform some tasks or to process signals. If a system is not stable, the
system may burn out, disintegrate, or saturate when a signal, no matter how small, is applied.
Therefore an unstable system is useless in practice and stability is a basic requirement for all
systems. In addition to stability, systems must meet other requirements, such as to track desired
signals and to suppress noise, to be really useful in practice.

The response of linear systems can always be decomposed as the zero-state response
and the zero-input response. It is customary to study the stabilities of these two responses
separately. We will introduce the BIBO (bounded-input bounded-output) stability for the zero-
state response and marginal and asymptotic stabilities for the zero-input response. We study
first the time-invariant case and then the time-varying case.

5.2 Input–Output Stability of LTI Systems

Consider a SISO linear time-invariant (LTI) system described by

y(t) =
∫ t

0
g(t − τ)u(τ) dτ =

∫ t

0
g(τ)u(t − τ) dτ (5.1)

where g(t) is the impulse response or the output excited by an impulse input applied at t = 0.
Recall that in order to be describable by (5.1), the system must be linear, time-invariant, and
causal. In addition, the system must be initially relaxed at t = 0.

121

122 STABILITY

An input u(t) is said to be bounded if u(t) does not grow to positive or negative infinity
or, equivalently, there exists a constant um such that

|u(t)| ≤ um < ∞ for all t ≥ 0

A system is said to be BIBO stable (bounded-input bounded-output stable) if every bounded
input excites a bounded output. This stability is defined for the zero-state response and is
applicable only if the system is initially relaxed.

� Theorem 5.1

A SISO system described by (5.1) is BIBO stable if and only if g(t) is absolutely integrable in [0, ∞), or∫ ∞

0
|g(t)|dt ≤ M < ∞

for some constant M .

Proof: First we show that if g(t) is absolutely integrable, then every bounded input excites
a bounded output. Let u(t) be an arbitrary input with |u(t)| ≤ um < ∞ for all t ≥ 0. Then

|y(t)| =
∣∣∣∣
∫ t

0
g(τ)u(t − τ) dτ

∣∣∣∣ ≤
∫ t

0
|g(τ)||u(t − τ)| dτ

≤ um

∫ ∞

0
|g(τ)|dτ ≤ umM

Thus the output is bounded. Next we show that if g(t) is not absolutely integrable, then
the system is not BIBO stable. If g(t) is not absolutely integrable, then for any arbitrarily
large N, there exists a t1 such that∫ t1

0
|g(τ)| dτ ≥ N

Let us choose

u(t1 − τ) =
{

1 if g(τ) ≥ 0

−1 if g(τ) < 0

Clearly u is bounded. The output excited by this input equals

y(t1) =
∫ t1

0
g(τ)u(t1 − τ) dτ =

∫ t1

0
|g(τ)| dτ ≥ N

Because y(t1) can be arbitrarily large, we conclude that a similar bounded input can excite
an unbounded output. This completes the proof of Theorem 5.1. Q.E.D.

A function that is absolutely integrable may not be bounded or may not approach zero as
t → ∞. Indeed, consider the function defined by

f (t − n) =
{

n + (t − n)n4 for n − 1/n3 ≤ t ≤ n

n − (t − n)n4 for n < t ≤ n + 1/n3

for n = 2, 3, . . . and plotted in Fig. 5.1. The area under each triangle is 1/n2. Thus the absolute

5.2 Input–Output Stability of LTI Systems 123

Figure 5.1 Function.

integration of the function equals
∑∞

n=2(1/n2) < ∞. This function is absolutely integrable
but is not bounded and does not approach zero as t → ∞.

� Theorem 5.2

If a system with impulse response g(t) is BIBO stable, then, as t → ∞:

1. The output excited by u(t) = a, for t ≥ 0, approaches ĝ(0) · a.

2. The output excited by u(t) = sin ωot, for t ≥ 0, approaches

|ĝ(jωo)| sin(ωot+ <) ĝ(jωo))

where ĝ(s) is the Laplace transform of g(t) or

ĝ(s) =
∫ ∞

0
g(τ)e−sτ dτ (5.2)

Proof: If u(t) = a for all t ≥ 0, then (5.1) becomes

y(t) =
∫ t

0
g(τ)u(t − τ) dτ = a

∫ t

0
g(τ) dτ

which implies

y(t) → a

∫ ∞

0
g(τ) dτ = aĝ(0) as t → ∞

where we have used (5.2) with s = 0. This establishes the first part of Theorem 5.2. If
u(t) = sin ωot , then (5.1) becomes

y(t) =
∫ t

0
g(τ) sin ωo(t − τ) dτ

=
∫ t

0
g(τ) [sin ωot cos ωoτ − cos ωot sin ωoτ] dτ

= sin ωot

∫ t

0
g(τ) cos ωoτ dτ − cos ωot

∫ t

0
g(τ) sin ωoτ dτ

124 STABILITY

Thus we have, as t → ∞,

y(t) → sin ωot

∫ ∞

0
g(τ) cos ωoτ dτ − cos ωot

∫ ∞

0
g(τ) sin ωoτ dτ (5.3)

If g(t) is absolutely integrable, we can replace s by jω in (5.2) to yield

ĝ(jω) =
∫ ∞

0
g(τ)[cos ωτ − j sin ωτ] dτ

The impulse response g(t) is assumed implicitly to be real; thus we have

Re[ĝ(jω)] =
∫ ∞

0
g(τ) cos ωτ dτ

and

Im[ĝ(jω)] = −
∫ ∞

0
g(τ) sin ωτ dτ

where Re and Im denote, respectively, the real part and imaginary part. Substituting these
into (5.3) yields

y(t) → sin ωot (Re[ĝ(jωo)]) + cos ωot (Im[ĝ(jωo)])

= |ĝ(jωo)| sin(ωot+ <) ĝ(jωo))

This completes the proof of Theorem 5.2. Q.E.D.

Theorem 5.2 is a basic result; filtering of signals is based essentially on this theorem.
Next we state the BIBO stability condition in terms of proper rational transfer functions.

� Theorem 5.3

A SISO system with proper rational transfer function ĝ(s) is BIBO stable if and only if every pole of
ĝ(s) has a negative real part or, equivalently, lies inside the left-half s-plane.

If ĝ(s) has pole pi with multiplicity mi , then its partial fraction expansion contains the
factors

1

s − pi

,
1

(s − pi)2
, · · · , 1

(s − pi)mi

Thus the inverse Laplace transform of ĝ(s) or the impulse response contains the factors

epi t , tepi t , · · · , tmi−1epi t

It is straightforward to verify that every such term is absolutely integrable if and only if pi has
a negative real part. Using this fact, we can establish Theorem 5.3.

Example 5.1 Consider the positive feedback system shown in Fig. 2.5(a). Its impulse response
was computed in (2.9) as

g(t) =
∞∑
i=1

aiδ(t − i)

5.2 Input–Output Stability of LTI Systems 125

where the gain a can be positive or negative. The impulse is defined as the limit of the pulse
in Fig. 2.3 and can be considered to be positive. Thus we have

|g(t)| =
∞∑
i=1

|a|iδ(t − i)

and ∫ ∞

0
|g(t)| dt =

∞∑
i=1

|a|i =
{∞ if |a| ≥ 1

|a|/(1 − |a|) < ∞ if |a| < 1

Thus we conclude that the positive feedback system in Fig. 2.5(a) is BIBO stable if and only
if the gain a has a magnitude less than 1.

The transfer function of the system was computed in (2.12) as

ĝ(s) = ae−s

1 − ae−s

It is an irrational function of s and Theorem 5.3 is not applicable. In this case, it is simpler to
use Theorem 5.1 to check its stability.

For multivariable systems, we have the following results.

� Theorem 5.M1

A multivariable system with impulse response matrix G(t) = [gij (t)] is BIBO stable if and only if
every gij (t) is absolutely integrable in [0, ∞).

� Theorem 5.M3

A multivariable system with proper rational transfer matrix Ĝ(s) = [ĝij (s)] is BIBO stable if and only
if every pole of every ĝij (s) has a negative real part.

We now discuss the BIBO stability of state equations. Consider

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5.4)

Its transfer matrix is

Ĝ(s) = C(sI − A)−1B + D

Thus Equation (5.4) or, to be more precise, the zero-state response of (5.4) is BIBO stable if
and only if every pole of Ĝ(s) has a negative real part. Recall that every pole of every entry
of Ĝ(s) is called a pole of Ĝ(s).

We discuss the relationship between the poles of Ĝ(s) and the eigenvalues of A. Because
of

Ĝ(s) = 1

det(sI − A)
C[Adj(sI − A)]B + D (5.5)

126 STABILITY

every pole of Ĝ(s) is an eigenvalue of A. Thus if every eigenvalue of A has a negative real
part, then every pole has a negative real part and (5.4) is BIBO stable. On the other hand,
because of possible cancellation in (5.5), not every eigenvalue is a pole. Thus, even if A has
some eigenvalues with zero or positive real part, (5.4) may still be BIBO stable, as the next
example shows.

Example 5.2 Consider the network shown in Fig. 4.2(b). Its state equation was derived in
Example 4.4 as

ẋ(t) = x(t) + 0 · u(t) y(t) = 0.5x(t) + 0.5u(t) (5.6)

The A-matrix is 1 and its eigenvalue is 1. It has a positive real part. The transfer function of
the equation is

ĝ(s) = 0.5(s − 1)−1 · 0 + 0.5 = 0.5

The transfer function equals 0.5. It has no pole and no condition to meet. Thus (5.6) is BIBO
stable even though it has an eigenvalue with a positive real part. We mention that BIBO stability
does not say anything about the zero-input response, which will be discussed later.

5.2.1 Discrete-Time Case

Consider a discrete-time SISO system described by

y[k] =
k∑

m=0

g[k − m]u[m] =
k∑

m=0

g[m]u[k − m] (5.7)

where g[k] is the impulse response sequence or the output sequence excited by an impulse
sequence applied at k = 0. Recall that in order to be describable by (5.7), the discrete-time
system must be linear, time-invariant, and causal. In addition, the system must be initially
relaxed at k = 0.

An input sequence u[k] is said to be bounded if u[k] does not grow to positive or negative
infinity or there exists a constant um such that

|u[k]| ≤ um < ∞ for k = 0, 1, 2, . . .

A system is said to be BIBO stable (bounded-input bounded-output stable) if every bounded-
input sequence excites a bounded-output sequence. This stability is defined for the zero-state
response and is applicable only if the system is initially relaxed.

� Theorem 5.D1

A discrete-time SISO system described by (5.7) is BIBO stable if and only if g[k] is absolutely summable
in [0, ∞) or

∞∑
k=0

|g[k]| ≤ M < ∞

for some constant M .

5.2 Input–Output Stability of LTI Systems 127

Its proof is similar to the proof of Theorem 5.1 and will not be repeated. We give a discrete
counterpart of Theorem 5.2 in the following.

� Theorem 5.D2

If a discrete-time system with impulse response sequence g[k] is BIBO stable, then, as k → ∞:

1. The output excited by u[k] = a, for k ≥ 0, approaches ĝ(1) · a.

2. The output excited by u[k] = sin ωok, for k ≥ 0, approaches

|ĝ(ejωo)| sin(ωok+ <) ĝ(ejωo))

where ĝ(z) is the z-transform of g[k] or

ĝ(z) =
∞∑

m=0

g[m]z−m (5.8)

Proof: If u[k] = a for all k ≥ 0, then (5.7) becomes

y[k] =
k∑
0

g[m]u[k − m] = a

k∑
k=0

g[m]

which implies

y[k] → a

∞∑
m=0

g[m] = aĝ(1) as k → ∞

where we have used (5.8) with z = 1. This establishes the first part of Theorem 5.D2. If
u[k] = sin ωok, then (5.7) becomes

y[k] =
k∑

m=0

g[m] sin ωo[k − m]

=
k∑

m=0

g[m](sin ωok cos ωom − cos ωok sin ωom)

= sin ωok

k∑
m=0

g[m] cos ωom − cos ωok

k∑
m=0

g[m] sin ωom

Thus we have, as k → ∞,

y[k] → sin ωok

∞∑
m=0

g[m] cos ωom − cos ωok

∞∑
m=0

g[m] sin ωom (5.9)

If g[k] is absolutely summable, we can replace z by ejω in (5.8) to yield

ĝ(ejω) =
∞∑

m=0

g[m]e−jωm =
∞∑

m=0

g[m][cos ωm − j sin ωm]

128 STABILITY

Thus (5.9) becomes

y[k] → sin ωok(Re[ĝ(ejωo)]) + cos ωok(Im[ĝ(ejωo)])

= |ĝ(ejωo)| sin(ωok+ <) ĝ(ejωo))

This completes the proof of Theorem 5.D2. Q.E.D.

Theorem 5.D2 is a basic result in digital signal processing. Next we state the BIBO
stability in terms of discrete proper rational transfer functions.

� Theorem 5.D3

A discrete-time SISO system with proper rational transfer function ĝ(z) is BIBO stable if and only if
every pole of ĝ(z) has a magnitude less than 1 or, equivalently, lies inside the unit circle on the z-plane.

If ĝ(z) has pole pi with multiplicity mi , then its partial fraction expansion contains the
factors

1

z − pi

,
1

(z − pi)2
, · · · , 1

(z − pi)mi

Thus the inverse z-transform of ĝ(z) or the impulse response sequence contains the factors

pk
i , kpk

i , · · · , kmi−1pk
i

It is straightforward to verify that every such term is absolutely summable if and only if pi has
a magnitude less than 1. Using this fact, we can establish Theorem 5.D3.

In the continuous-time case, an absolutely integrable function f (t), as shown in Fig. 5.1,
may not be bounded and may not approach zero as t → ∞. In the discrete-time case, if g[k]
is absolutely summable, then it must be bounded and approach zero as k → ∞. However, the
converse is not true as the next example shows.

Example 5.3 Consider a discrete-time LTI system with impulse response sequence g[k] =
1/k, for k = 1, 2, . . . , and g[0] = 0. We compute

S :=
∞∑

k=0

|g[k]| =
∞∑

k=1

1

k
= 1 + 1

2
+ 1

3
+ 1

4
+ · · ·

= 1 + 1

2
+
(

1

3
+ 1

4

)
+
(

1

5
+ · · · + 1

8

)
+
(

1

9
+ · · · + 1

16

)
+ · · ·

There are two terms, each is 1
4 or larger, in the first pair of parentheses; therefore their sum

is larger than 1
2 . There are four terms, each is 1

8 or larger, in the second pair of parentheses;
therefore their sum is larger than 1

2 . Proceeding forward we conclude

S > 1 + 1

2
+ 1

2
+ 1

2
+ · · · = ∞

This impulse response sequence is bounded and approaches 0 as k → ∞ but is not absolutely
summable. Thus the discrete-time system is not BIBO stable according to Theorem 5.D1. The
transfer function of the system can be shown to equal

5.3 Internal Stability 129

ĝ(z) = − ln(1 + z−1)

It is not a rational function of z and Theorem 5.D3 is not applicable.

For multivariable discrete-time systems, we have the following results.

� Theorem 5.MD1

A MIMO discrete-time system with impulse response sequence matrix G[k] = [gij [k]
]

is BIBO stable
if and only if every gij [k] is absolutely summable.

� Theorem 5.MD3

A MIMO discrete-time system with discrete proper rational transfer matrix Ĝ(z) = [
ĝij (z)

]
is BIBO

stable if and only if every pole of every ĝij (z) has a magnitude less than 1.

We now discuss the BIBO stability of discrete-time state equations. Consider

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
(5.10)

Its discrete transfer matrix is

Ĝ(z) = C(zI − A)−1B + D

Thus Equation (5.10) or, to be more precise, the zero-state response of (5.10) is BIBO stable
if and only if every pole of Ĝ(z) has a magnitude less than 1.

We discuss the relationship between the poles of Ĝ(z) and the eigenvalues of A. Because
of

Ĝ(z) = 1

det(zI − A)
C[Adj(zI − A)]B + D

every pole of Ĝ(z) is an eigenvalue of A. Thus if every eigenvalue of A has a magnitude less
than 1, then (5.10) is BIBO stable. On the other hand, even if A has some eigenvalues with
magnitude 1 or larger, (5.10) may, as in the continuous-time case, still be BIBO stable.

5.3 Internal Stability

The BIBO stability is defined for the zero-state response. Now we study the stability of the
zero-input response or the response of

ẋ(t) = Ax(t) (5.11)

excited by nonzero initial state xo. Clearly, the solution of (5.11) is

x(t) = eAtxo (5.12)

130 STABILITY

Definition 5.1 The zero-input response of (5.4) or the equation ẋ = Ax is marginally
stable or stable in the sense of Lyapunov if every finite initial state xo excites a bounded
response. It is asymptotically stable if every finite initial state excites a bounded response,
which, in addition, approaches 0 as t → ∞.

We mention that this definition is applicable only to linear systems. The definition that
is applicable to both linear and nonlinear systems must be defined using the concept of
equivalence states and can be found, for example, in Reference [6, pp. 401–403]. This text
studies only linear systems; therefore we use the simplified Definition 5.1.

� Theorem 5.4

1. The equation ẋ = Ax is marginally stable if and only if all eigenvalues of A have zero or negative
real parts and those with zero real parts are simple roots of the minimal polynomial of A.

2. The equation ẋ = Ax is asymptotically stable if and only if all eigenvalues of A have negative real
parts.

We first mention that any (algebraic) equivalence transformation will not alter the stability
of a state equation. Consider x̄ = Px, where P is a nonsingular matrix. Then ẋ = Ax is
equivalent to ˙̄x = Āx̄ = PAP−1x̄. Because P is nonsingular, if x is bounded, so is x̄; if x
approaches 0 as t → ∞, so does x̄. Thus we may study the stability of A by using Ā. Note
that the eigenvalues of A and of Ā are the same as discussed in Section 4.3.

The response of ˙̄x = Āx̄ excited by x̄(0) equals x̄(t) = eĀt x̄(0). It is clear that the
response is bounded if and only if every entry of eĀt is bounded for all t ≥ 0. If Ā is in Jordan
form, then eĀt is of the form shown in (3.48). Using (3.48), we can show that if an eigenvalue
has a negative real part, then every entry of (3.48) is bounded and approaches 0 as t → ∞.
If an eigenvalue has zero real part and has no Jordan block of order 2 or higher, then the
corresponding entry in (3.48) is a constant or is sinusoidal for all t and is, therefore, bounded.
This establishes the sufficiency of the first part of Theorem 5.4. If Ā has an eigenvalue with a
positive real part, then every entry in (3.48) will grow without bound. If Ā has an eigenvalue
with zero real part and its Jordan block has order 2 or higher, then (3.48) has at least one entry
that grows unbounded. This completes the proof of the first part. To be asymptotically stable,
every entry of (3.48) must approach zero as t → ∞. Thus no eigenvalue with zero real part is
permitted. This establishes the second part of the theroem.

Example 5.4 Consider

ẋ =

 0 0 0

0 0 0

0 0 −1


 x

Its characteristic polynomial is �(λ) = λ2(λ + 1) and its mimimal polynomial is ψ(λ) =
λ(λ + 1). The matrix has eigenvalues 0, 0, and −1. The eigenvalue 0 is a simple root of the
minimal polynomial. Thus the equation is marginally stable. The equation

5.3 Internal Stability 131

ẋ =

 0 1 0

0 0 0

0 0 −1


 x

is not marginally stable, however, because its minimal polynomial is λ2(λ + 1) and λ = 0 is
not a simple root of the minimal polynomial.

As discussed earlier, every pole of the transfer matrix

Ĝ(s) = C(sI − A)−1B + D

is an eigenvalue of A. Thus asymptotic stability implies BIBO stability. Note that asymptotic
stability is defined for the zero-input response, whereas BIBO stability is defined for the
zero-state response. The system in Example 5.2 has eigenvalue 1 and is not asymptoti-
cally stable; however, it is BIBO stable. Thus BIBO stability, in general, does not im-
ply asymptotic stability. We mention that marginal stability is useful only in the design
of oscillators. Other than oscillators, every physical system is designed to be asymptoti-
cally stable or BIBO stable with some additional conditions, as we will discuss in Chap-
ter 7.

5.3.1 Discrete-Time Case

This subsection studies the internal stability of discrete-time systems or the stability of

x[k + 1] = Ax[k] (5.13)

excited by nonzero initial state xo. The solution of (5.13) is, as derived in (4.20),

x[k] = Akxo (5.14)

Equation (5.13) is said to be marginally stable or stable in the sense of Lyapunov if every
finite initial state xo excites a bounded response. It is asymptotically stable if every finite
initial state excites a bounded response, which, in addition, approaches 0 as k → ∞. These
definitions are identical to the continuous-time case.

� Theorem 5.D4

1. The equation x[k + 1] = Ax[k] is marginally stable if and only if all eigenvalues of A have
magnitudes less than or equal to 1 and those equal to 1 are simple roots of the minimal polynomial of
A.

2. The equation x[k + 1] = Ax[k] is asymptotically stable if and only if all eigenvalues of A have
magnitudes less than 1.

As in the continuous-time case, any (algebraic) equivalence transformation will not alter
the stability of a state equation. Thus we can use Jordan form to establish the theorem. The
proof is similar to the continuous-time case and will not be repeated. Asymptotic stability

132 STABILITY

implies BIBO stability but not the converse. We mention that marginal stability is useful only
in the design of discrete-time oscillators. Other than oscillators, every discrete-time physical
system is designed to be asymptotically stable or BIBO stable with some additional conditions,
as we will discuss in Chapter 7.

5.4 Lyapunov Theorem

This section introduces a different method of checking asymptotic stability of ẋ = Ax. For
convenience, we call A stable if every eigenvalue of A has a negative real part.

� Theorem 5.5

All eigenvalues of A have negative real parts if and only if for any given positive definite symmetric
matrix N, the Lyapunov equation

A′M + MA = −N (5.15)

has a unique symmetric solution M and M is positive definite.

� Corollary 5.5

All eigenvalues of an n × n matrix A have negative real parts if and only if for any given m × n matrix
N̄ with m < n and with the property

rank O := rank




N̄
N̄A
...

N̄An−1


 = n (full column rank) (5.16)

where O is an nm × n matrix, the Lyapunov equation

A′M + MA = −N̄′N̄ =: −N (5.17)

has a unique symmetric solution M and M is positive definite.

For any N̄, the matrix N in (5.17) is positive semidefinite (Theorem 3.7). Theorem 5.5
and its corollary are valid for any given N; therefore we shall use the simplest possible N.
Even so, using them to check stability of A is not simple. It is much simpler to compute,
using MATLAB, the eigenvalues of A and then check their real parts. Thus the importance
of Theorem 5.5 and its corollary is not in checking the stability of A but rather in studying
the stability of nonlinear systems. They are essential in using the so-called second method of
Lyapunov. We mention that Corollary 5.5 can be used to prove the Routh–Hurwitz test. See
Reference [6, pp. 417–419].

Proof of Theorem 5.5 Necessity: Equation (5.15) is a special case of (3.59) with A = A′
and B = A. Because A and A′ have the same set of eigenvalues, if A is stable, A has no
two eigenvalues such that λi + λj = 0. Thus the Lyapunov equation is nonsingular and
has a unique solution M for any N. We claim that the solution can be expressed as

5.4 Lyapunov Theorem 133

M =
∫ ∞

0
eA′tNeAt dt (5.18)

Indeed, substituting (5.18) into (5.15) yields

A′M + MA =
∫ ∞

0
A′eA′tNeAt dt +

∫ ∞

0
eA′tNeAtA dt

=
∫ ∞

0

d

dt

(
eA′tNeAt

)
dt = eA′tNeAt

∣∣∣∞
t=0

= 0 − N = −N (5.19)

where we have used the fact eAt = 0 at t = ∞ for stable A. This shows that the M in
(5.18) is the solution. It is clear that if N is symmetric, so is M. Let us decompose N as
N = N̄′N̄, where N̄ is nonsingular (Theorem 3.7) and consider

x′Mx =
∫ ∞

0
x′eA′t N̄′N̄eAtx dt =

∫ ∞

0
||N̄eAtx||22 dt (5.20)

Because both N̄ and eAt are nonsingular, for any nonzero x, the integrand of (5.20) is
positive for every t . Thus x′Mx is positive for any x �= 0. This shows the positive
definiteness of M.

Sufficiency: We show that if N and M are positive definite, then A is stable. Let λ be an
eigenvalue of A and v �= 0 be a corresponding eigenvector; that is, Av = λv. Even though
A is a real matrix, its eigenvalue and eigenvector can be complex, as shown in Example 3.6.
Taking the complex-conjugate transpose of Av = λv yields v∗A∗ = v∗A′ = λ∗v∗, where
the asterisk denotes complex-conjugate transpose. Premultiplying v∗ and postmultiplying
v to (5.15) yields

−v∗Nv = v∗A′Mv + v∗MAv

= (λ∗ + λ)v∗Mv = 2Re(λ)v∗Mv (5.21)

Because v∗Mv and v∗Nv are, as discussed in Section 3.9, both real and positive, (5.21)
implies Re(λ) < 0. This shows that every eigenvalue of A has a negative real part.
Q.E.D.

The proof of Corollary 5.5 follows the proof of Theorem 5.5 with some modification. We
discuss only where the proof of Theorem 5.5 is not applicable. Consider (5.20). Now N̄ is m×n

with m < n and N = N̄′N̄ is positive semidefinite. Even so, M in (5.18) can still be positive
definite if the integrand of (5.20) is not identically zero for all t . Suppose the integrand of (5.20)
is identically zero or N̄eAtx ≡ 0. Then its derivative with respect to t yields N̄AeAtx = 0.
Proceeding forward, we can obtain 


N̄

N̄A
...

N̄An−1


 eAtx = 0 (5.22)

This equation implies that, because of (5.16) and the nonsingularity of eAt , the only x meeting

134 STABILITY

(5.22) is 0. Thus the integrand of (5.20) cannot be identically zero for any x �= 0. Thus M is
positive definite under the condition in (5.16). This shows the necessity of Corollary 5.5. Next
we consider (5.21) with N = N̄′N̄ or1

2Re(λ)v∗Mv = −v∗N̄′N̄v = −||N̄v||22 (5.23)

We show that N̄v is nonzero under (5.16). Because of Av = λv, we have A2v = λAv = λ2v,
. . . , An−1v = λn−1v. Consider


N̄

N̄A
...

N̄An−1


 v =




N̄v
N̄Av

...

N̄An−1v


 =




N̄v
λN̄v

...

λn−1N̄v




If N̄v = 0, the rightmost matrix is zero; the leftmost matrix, however, is nonzero under the
conditions of (5.16) and v �= 0. This is a contradiction. Thus N̄v is nonzero and (5.23) implies
Re(λ)< 0. This completes the proof of Corollary 5.5.

In the proof of Theorem of 5.5, we have established the following result. For easy
reference, we state it as a theorem.

� Theorem 5.6

If all eigenvalues of A have negative real parts, then the Lyapunov equation

A′M + MA = −N

has a unique solution for every N, and the solution can be expressed as

M =
∫ ∞

0
eA′tNeAt dt (5.24)

Because of the importance of this theorem, we give a different proof of the uniqueness
of the solution. Suppose there are two solutions M1 and M2. Then we have

A′(M1 − M2) + (M1 − M2)A = 0

which implies

eA′t [A′(M1 − M2) + (M1 − M2)A]eAt = d

dt
[eA′t (M1 − M2)e

At] = 0

Its integration from 0 to ∞ yields

[eA′t (M1 − M2)e
At]
∣∣∣∞
0

= 0

or, using eAt → 0 as t → ∞,

0 − (M1 − M2) = 0

1. Note that if x is a complex vector, then the Euclidean norm defined in Section 3.2 must be modified as ||x||22 = x∗x,
where x∗ is the complex conjugate transpose of x.

5.4 Lyapunov Theorem 135

This shows the uniqueness of M. Although the solution can be expressed as in (5.24), the
integration is not used in computing the solution. It is simpler to arrange the Lyapunov equation,
after some transformations, into a standard linear algebraic equation as in (3.60) and then solve
the equation. Note that even if A is not stable, a unique solution still exists if A has no two
eigenvalues such that λi + λj = 0. The solution, however, cannot be expressed as in (5.24);
the integration will diverge and is meaningless. If A is singular or, equivalently, has at least
one zero eigenvalue, then the Lyapunov equation is always singular and solutions may or may
not exist depending on whether or not N lies in the range space of the equation.

5.4.1 Discrete-Time Case

Before discussing the discrete counterpart of Theorems 5.5 and 5.6, we discuss the discrete
counterpart of the Lyapunov equation in (3.59). Consider

M − AMB = C (5.25)

where A and B are, respectively, n × n and m × m matrices, and M and C are n × m matrices.
As (3.60), Equation (5.25) can be expressed as Ym = c, where Y is an nm×nm matrix; m and
c are nm × 1 column vectors with the m columns of M and C stacked in order. Thus (5.25) is
essentially a set of linear algebraic equations. Let ηk be an eigenvalue of Y or of (5.25). Then
we have

ηk = 1 − λiµj for i = 1, 2, . . . , n; j = 1, 2, . . . , m

where λi and µj are, respectively, the eigenvalues of A and B. This can be established intuitively
as follows. Let us define A(M) := M − AMB. Then (5.25) can be written as A(M) = C. A
scalar η is an eigenvalue of A if there exists a nonzero M such that A(M) = ηM. Let u be
an n × 1 right eigenvector of A associated with λi ; that is, Au = λiu. Let v be a 1 × m left
eigenvector of B associated with µj ; that is, vB = vµj . Applying A to the n × m nonzero
matrix uv yields

A(uv) = uv − AuvB = (1 − λiµj)uv

Thus the eigenvalues of (5.25) are 1 − λiµj , for all i and j . If there are no i and j such that
λiµj = 1, then (5.25) is nonsingular and, for any C, a unique solution M exists in (5.25). If
λiµj = 1 for some i and j , then (5.25) is singular and, for a given C, solutions may or may
not exist. The situation here is similar to what was discussed in Section 3.7.

� Theorem 5.D5

All eigenvalues of an n × n matrix A have magnitudes less than 1 if and only if for any given positive
definite symmetric matrix N or for N = N̄′N̄, where N̄ is any given m × n matrix with m < n and
with the property in (5.16), the discrete Lyapunov equation

M − A′MA = N (5.26)

has a unique symmetric solution M and M is positive definite.

136 STABILITY

We sketch briefly its proof for N > 0. If all eigenvalues of A and, consequently, of A′
have magnitudes less than 1, then we have |λiλj | < 1 for all i and j . Thus λiλj �= 1 and
(5.26) is nonsingular. Therefore, for any N, a unique solution exists in (5.26). We claim that
the solution can be expressed as

M =
∞∑

m=0

(A′)mNAm (5.27)

Because |λi | < 1 for all i, this infinite series converges and is well defined. Substituting (5.27)
into (5.26) yields

∞∑
m=0

(A′)mNAm − A′
(∞∑

m=0

(A′)mNAm

)
A

= N +
∞∑

m=1

(A′)mNAm −
∞∑

m=1

(A′)mNAm = N

Thus (5.27) is the solution. If N is symmetric, so is M. If N is positive definite, so is M. This
establishes the necessity. To show sufficiency, let λ be an eigenvalue of A and v �= 0 be a
corresponding eigenvector; that is, Av = λv. Then we have

v∗Nv = v∗Mv − v∗A′MAv

= v∗Mv − λ∗v∗Mvλ = (1 − |λ|2)v∗Mv

Because both v∗Nv and v∗Mv are real and positive, we conclude (1 − |λ|2) > 0 or |λ|2 < 1.
This establishes the theorem for N > 0. The case N ≥ 0 can similarly be established.

� Theorem 5.D6

If all eigenvalues of A have magnitudes less than 1, then the discrete Lyapunov equation

M − A′MA = N

has a unique solution for every N, and the solution can be expressed as

M =
∞∑

m=0

(A′)mNAm

It is important to mention that even if A has one or more eigenvalues with magnitudes
larger than 1, a unique solution still exists in the discrete Lyapunov equation if λiλj �= 1 for all
i and j . In this case, the solution cannot be expressed as in (5.27) but can be computed from
a set of linear algebraic equations.

Let us discuss the relationships between the continuous-time and discrete-time Lyapunov
equations. The stability condition for continuous-time systems is that all eigenvalues lie
inside the open left-half s-plane. The stability condition for discrete-time systems is that all
eigenvalues lie inside the unit circle on the z-plane. These conditions can be related by the
bilinear transformation

s = z − 1

z + 1
z = 1 + s

1 − s
(5.28)

5.5 Stability of LTV Systems 137

which maps the left-half s-plane into the interior of the unit circle on the z-plane and vice
versa. To differentiate the continuous-time and discrete-time cases, we write

A′M + MA = −N (5.29)

and

Md − A′
dMdAd = Nd (5.30)

Following (5.28), these two equations can be related by

A = (Ad + I)−1(Ad − I) Ad = (I + A)(I − A)−1

Substituting the right-hand-side equation into (5.30) and performing a simple manipulation,
we find

A′Md + MdA = −0.5(I − A′)Nd(I − A)

Comparing this with (5.29) yields

A = (Ad + I)−1(Ad − I) M = Md N = 0.5(I − A′)Nd(I − A) (5.31)

These relate (5.29) and (5.30).
The MATLAB function lyap computes the Lyapunov equation in (5.29) and dlyap

computes the discrete Lyapunov equation in (5.30). The function dlyap transforms (5.30)
into (5.29) by using (5.31) and then calls lyap. The result yields M = Md .

5.5 Stability of LTV Systems

Consider a SISO linear time-varying (LTV) system described by

y(t) =
∫ t

t0

g(t, τ)u(τ) dτ (5.32)

The system is said to be BIBO stable if every bounded input excites a bounded output. The
condition for (5.32) to be BIBO stable is that there exists a finite constant M such that∫ t

t0

|g(t, τ)| dτ ≤ M < ∞ (5.33)

for all t and t0 with t ≥ t0. The proof in the time-invariant case applies here with only minor
modification.

For the multivariable case, (5.32) becomes

y(t) =
∫ t

t0

G(t, τ)u(τ) dτ (5.34)

The condition for (5.34) to be BIBO stable is that every entry of G(t, τ) meets the condition
in (5.33). For multivariable systems, we can also express the condition in terms of norms. Any
norm discussed in Section 3.11 can be used. However, the infinite-norm

||u||∞ = max
i

|ui | ||G||∞ = largest row absolute sum

138 STABILITY

is probably the most convenient to use in stability study. For convenience, no subscript will
be attached to any norm. The necessary and sufficient condition for (5.34) to be BIBO stable
is that there exists a finite constant M such that∫ t

t0

||G(t, τ)|| dτ ≤ M < ∞

for all t and t0 with t ≥ t0.
The impulse response matrix of

ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
(5.35)

is

G(t, τ) = C(t)�(t, τ)B(τ) + D(t)δ(t − τ)

and the zero-state response is

y(t) =
∫ t

t0

C(t)�(t, τ)B(τ)u(τ) dτ + D(t)u(t)

Thus (5.35) or, more precisely, the zero-state response of (5.35) is BIBO stable if and only if
there exist constants M1 and M2 such that

||D(t)|| ≤ M1 < ∞
and ∫ t

t0

||G(t, τ)|| dτ ≤ M2 < ∞

for all t and t0 with t ≥ t0.
Next we study the stability of the zero-input response of (5.35). As in the time-invariant

case, we define the zero-input response of (5.35) or the equation ẋ = A(t)x to be marginally
stable if every finite initial state excites a bounded response. Because the response is governed
by

x(t) = �(t, t0)x(t0) (5.36)

we conclude that the response is marginally stable if and only if there exists a finite constant
M such that

||�(t, t0)|| ≤ M < ∞ (5.37)

for all t0 and for all t ≥ t0. The equation ẋ = A(t)x is asymptotically stable if the response
excited by every finite initial state is bounded and approaches zero as t → ∞. The asymptotic
stability conditions are the boundedness condition in (5.37) and

||�(t, t0)|| → 0 as t → ∞ (5.38)

A great deal can be said regarding these definitions and conditions. Does the constant M in

5.5 Stability of LTV Systems 139

(5.37) depend on t0? What is the rate for the state transition matrix to approach 0 in (5.38)?
The interested reader is referred to References [4, 15].

A time-invariant equation ẋ = Ax is asymptotically stable if all eigenvalues of A have
negative real parts. Is this also true for the time-varying case? The answer is negative as the
next example shows.

Example 5.5 Consider the linear time-varying equation

ẋ = A(t)x =
[−1 e2t

0 −1

]
x (5.39)

The characteristic polynomial of A(t) is

det(λI − A(t)) = det

[
λ + 1 −e2t

0 λ + 1

]
= (λ + 1)2

Thus A(t) has eigenvalues −1 and −1 for all t . It can be verified directly that

�(t, 0) =
[

e−t 0.5(et − e−t)

0 e−t

]

meets (4.53) and is therefore the state transition matrix of (5.39). See also Problem 4.16.
Because the (1,2)th entry of � grows without bound, the equation is neither asymptotically
stable nor marginally stable. This example shows that even though the eigenvalues can be
defined for A(t) at every t , the concept of eigenvalues is not useful in the time-varying case.

All stability properties in the time-invariant case are invariant under any equivalence
transformation. In the time-varying case, this is so only for BIBO stability, because the
impulse response matrix is preserved. An equivalence transformation can transform, as shown
in Theorem 4.3, any ẋ = A(t)x into ˙̄x = Aox̄, where Ao is any constant matrix; therefore, in the
time-varying case, marginal and asymptotic stabilities are not invariant under any equivalence
transformation.

� Theorem 5.7

Marginal and asymptotic stabilities of ẋ = A(t)x are invariant under any Lyapunov transformation.

As discussed in Section 4.6, if P(t) and Ṗ(t) are continuous, and P(t) is nonsingular
for all t , then x̄ = P(t)x is an algebraic transformation. If, in addition, P(t) and P−1(t) are
bounded for all t , then x̄ = P(t)x is a Lyapunov transformation. The fundamental matrix X(t)

of ẋ = A(t)x and the fundamental matrix X̄(t) of ˙̄x = Ā(t)x̄ are related by, as derived in
(4.71),

X̄(t) = P(t)X(t)

which implies

�̄(t, τ) = X̄(t)X̄
−1

(τ) = P(t)X(t)X−1(τ)P−1(τ)

= P(t)�(t, τ)P−1(τ) (5.40)

140 STABILITY

Because both P(t) and P−1(t) are bounded, if ||�(t, τ)|| is bounded, so is ||�̄(t, τ)||; if
||�(t, τ)|| → 0 as t → ∞, so is ||�̄(t, τ)||. This establishes Theorem 5.7.

In the time-invariant case, asymptotic stability of zero-input responses always implies
BIBO stability of zero-state responses. This is not necessarily so in the time-varying case. A
time-varying equation is asymptotically stable if

||�(t, t0)|| → 0 as t → ∞ (5.41)

for all t , t0 with t ≥ t0. It is BIBO stable if∫ t

t0

||C(t)�(t, τ)B(τ)|| dτ < ∞ (5.42)

for all t , t0 with t ≥ t0. A function that approaches 0, as t → ∞, may not be absolutely
integrable. Thus asymptotic stability may not imply BIBO stability in the time-varying case.
However, if ||�(t, τ)|| decreases to zero rapidly, in particular, exponentially, and if C(t) and
B(t) are bounded for all t , then asymptotic stability does imply BIBO stability. See References
[4, 6, 15].

PROBLEMS
5.1 Is the network shown in Fig. 5.2 BIBO stable? If not, find a bounded input that will

excite an unbounded output.

u 1H 1F

+

−

y

Figure 5.2

5.2 Consider a system with an irrational transfer function ĝ(s). Show that a necessary
condition for the system to be BIBO stable is that |ĝ(s)| is finite for all Re s ≥ 0.

5.3 Is a system with impulse response g(t) = 1/(t+1) BIBO stable? How about g(t) = te−t

for t ≥ 0?

5.4 Is a system with transfer function ĝ(s) = e−2s/(s + 1) BIBO stable?

5.5 Show that the negative-feedback system shown in Fig. 2.5(b) is BIBO stable if and only
if the gain a has a magnitude less than 1. For a = 1, find a bounded input r(t) that will
excite an unbounded output.

5.6 Consider a system with transfer function ĝ(s) = (s−2)/(s+1). What are the steady-state
responses excited by u(t) = 3, for t ≥ 0, and by u(t) = sin 2t , for t ≥ 0?

5.7 Consider

ẋ =
[−1 10

0 1

]
x +

[−2

0

]
u

y = [−2 3]x − 2u

Problems 141

Is it BIBO stable?

5.8 Consider a discrete-time system with impulse response sequence

g[k] = k(0.8)k for k ≥ 0

Is the system BIBO stable?

5.9 Is the state equation in Problem 5.7 marginally stable? Asymptotically stable?

5.10 Is the homogeneous state equation

ẋ =

−1 0 1

0 0 0

0 0 0


 x

marginally stable? Asymptotically stable?

5.11 Is the homogeneous state equation

ẋ =

−1 0 1

0 0 1

0 0 0


 x

marginally stable? Asymptotically stable?

5.12 Is the discrete-time homogeneous state equation

x[k + 1] =

 0.9 0 1

0 1 0

0 0 1


 x[k]

marginally stable? Asymptotically stable?

5.13 Is the discrete-time homogeneous state equation

x[k + 1] =

 0.9 0 1

0 1 1

0 0 1


 x[k]

marginally stable? Asymptotically stable?

5.14 Use Theorem 5.5 to show that all eigenvalues of

A =
[

0 1

−0.5 −1

]

have negative real parts.

5.15 Use Theorem 5.D5 to show that all eigenvalues of the A in Problem 5.14 have magnitudes
less than 1.

5.16 For any distinct negative real λi and any nonzero real ai , show that the matrix

142 STABILITY

M =




− a2
1

2λ1
− a1a2

λ1 + λ2
− a1a3

λ1 + λ3

− a2a1

λ2 + λ1
− a2

2

2λ2
− a2a3

λ2 + λ3

− a3a1

λ3 + λ1
− a3a2

λ3 + λ2
− a2

3

2λ3




is positive definite. [Hint: Use Corollary 5.5 and A=diag(λ1, λ2, λ3).]

5.17 A real matrix M (not necessarily symmetric) is defined to be positive definite if x′Mx > 0
for any nonzero x. Is it true that the matrix M is positive definite if all eigenvalues of
M are real and positive or if all its leading principal minors are positive? If not, how do
you check its positive definiteness? [Hint: Try[

0 1

−2 3

] [
2 1

1.9 1

]
]

5.18 Show that all eigenvalues of A have real parts less than −µ < 0 if and only if, for any
given positive definite symmetric matrix N, the equation

A′M + MA + 2µM = −N

has a unique symmetric solution M and M is positive definite.

5.19 Show that all eigenvalues of A have magnitudes less than ρ if and only if, for any given
positive definite symmetric matrix N, the equation

ρ2M − A′MA = ρ2N

has a unique symmetric solution M and M is positive definite.

5.20 Is a system with impulse response g(t, τ) = e−2|t |−|τ |, for t ≥ τ , BIBO stable? How
about g(t, τ) = sin t (e−(t−τ)) cos τ?

5.21 Consider the time-varying equation

ẋ = 2tx + u y = e−t2
x

Is the equation BIBO stable? Marginally stable? Asymptotically stable?

5.22 Show that the equation in Problem 5.21 can be transformed by using x̄ = P(t)x, with
P(t) = e−t2

, into

˙̄x = 0 · x̄ + e−t2
u y = x̄

Is the equation BIBO stable? Marginally stable? Asymptotically stable? Is the transfor-
mation a Lyapunov transformation?

5.23 Is the homogeneous equation

ẋ =
[−1 0

−e−3t 0

]
x

for t0 ≥ 0, marginally stable? Asymptotically stable?

Chapter

6
Controllability

and Observability

6.1 Introduction

This chapter introduces the concepts of controllability and observability. Controllability
deals with whether or not the state of a state-space equation can be controlled from the input,
and observability deals with whether or not the initial state can be observed from the output.
These concepts can be illustrated using the network shown in Fig. 6.1. The network has two
state variables. Let xi be the voltage across the capacitor with capacitance Ci , for i = 1, 2.
The input u is a current source and the output y is the voltage shown. From the network, we
see that, because of the open circuit across y, the input has no effect on x2 or cannot control
x2. The current passing through the 2-
 resistor always equals the current source u; therefore
the response excited by the initial state x1 will not appear in y. Thus the initial state x1 cannot
be observed from the output. Thus the equation describing the network cannot be controllable
and observable.

These concepts are essential in discussing the internal structure of linear systems. They
are also needed in studying control and filtering problems. We study first continuous-time

Figure 6.1 Network.

143

144 CONTROLLABILITY AND OBSERVABILITY

linear time-invariant (LTI) state equations and then discrete-time LTI state equations. Finally,
we study the time-varying case.

6.2 Controllability

Consider the n-dimensional p-input state equation

ẋ = Ax + Bu (6.1)

where A and B are, respectively, n × n and n × p real constant matrices. Because the output
does not play any role in controllability, we will disregard the output equation in this study.

Definition 6.1 The state equation (6.1) or the pair (A, B) is said to be controllable if for
any initial state x(0) = x0 and any final state x1, there exists an input that transfers x0

to x1 in a finite time. Otherwise (6.1) or (A, B) is said to be uncontrollable.

This definition requires only that the input be capable of moving any state in the state
space to any other state in a finite time; what trajectory the state should take is not specified.
Furthermore, there is no constraint imposed on the input; its magnitude can be as large as
desired. We give an example to illustrate the concept.

Example 6.1 Consider the network shown in Fig. 6.2(a). Its state variable x is the voltage
across the capacitor. If x(0) = 0, then x(t) = 0 for all t ≥ 0 no matter what input is applied.
This is due to the symmetry of the network, and the input has no effect on the voltage across
the capacitor. Thus the system or, more precisely, the state equation that describes the system
is not controllable.

Next we consider the network shown in Fig. 6.2(b). It has two state variables x1 and
x2 as shown. The input can transfer x1 or x2 to any value; but it cannot transfer x1 and x2

to any values. For example, if x1(0) = x2(0) = 0, then no matter what input is applied,
x1(t) always equals x2(t) for all t ≥ 0. Thus the equation that describes the network is not
controllable.

Figure 6.2 Uncontrollable networks.

6.2 Controllability 145

� Theorem 6.1

The following statements are equivalent.

1. The n-dimensional pair (A, B) is controllable.

2. The n × n matrix

Wc(t) =
∫ t

0
eAτ BB′eA′τ dτ =

∫ t

0
eA(t−τ)BB′eA′(t−τ) dτ (6.2)

is nonsingular for any t > 0.

3. The n × np controllability matrix

C = [B AB A2B · · · An−1B] (6.3)

has rank n (full row rank).

4. The n × (n + p) matrix [A − λI B] has full row rank at every eigenvalue, λ, of A.1

5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

AWc + WcA′ = −BB′ (6.4)

is positive definite. The solution is called the controllability Gramian and can be expressed as

Wc =
∫ ∞

0
eAτ BB′eA′τ dτ (6.5)

Proof: (1) ↔ (2): First we show the equivalence of the two forms in (6.2). Define
τ̄ := t − τ . Then we have∫ t

τ=0
eA(t−τ)BB′eA′(t−τ) dτ =

∫ 0

τ̄=t

eAτ̄ BB′eA′ τ̄ (−dτ̄)

=
∫ t

τ̄=0
eAτ̄ BB′eA′ τ̄ dτ̄

It becomes the first form of (6.2) after replacing τ̄ by τ . Because of the form of the
integrand, Wc(t) is always positive semidefinite; it is positive definite if and only if it is
nonsingular. See Section 3.9.

First we show that if Wc(t) is nonsingular, then (6.1) is controllable. The response
of (6.1) at time t1 was derived in (4.5) as

x(t1) = eAt1 x(0) +
∫ t1

0
eA(t1−τ)Bu(τ) dτ (6.6)

We claim that for any x(0) = x0 and any x(t1) = x1, the input

u(t) = −B′eA′(t1−t)W−1
c (t1)[e

At1 x0 − x1] (6.7)

will transfer x0 to x1 at time t1. Indeed, substituting (6.7) into (6.6) yields

1. If λ is complex, then we must use complex numbers as scalars in checking the rank. See the discussion regarding
(3.37).

146 CONTROLLABILITY AND OBSERVABILITY

x(t1) = eAt1 x0 −
(∫ t1

0
eA(t1−τ)BB′eA′(t1−τ)dτ

)
W−1

c (t1)[e
At1 x0 − x1]

= eAt1 x0 − Wc(t1)W−1
c (t1)[e

At1 x0 − x1] = x1

This shows that if Wc is nonsingular, then the pair (A, B) is controllable. We show the
converse by contradiction. Suppose the pair is controllable but Wc(t1) is not positive
definite for some t1. Then there exists an n × 1 nonzero vector v such that

v′Wc(t1)v =
∫ t1

0
v′eA(t1−τ)BB′eA′(t1−τ)vdτ

=
∫ t1

0
||B′eA′(t1−τ)v||2dτ = 0

which implies

B′eA′(t1−τ)v ≡ 0 or v′eA(t1−τ)B ≡ 0 (6.8)

for all τ in [0, t1]. If (6.1) is controllable, there exists an input that transfers the initial state
x(0) = e−At1 v to x(t1) = 0 and (6.6) becomes

0 = v +
∫ t1

0
eA(t1−τ)Bu(τ) dτ

Its premultiplication by v′ yields

0 = v′v +
∫ t1

0
v′eA(t1−τ)Bu(τ) dτ = ||v||2 + 0

which contradicts v �= 0. This establishes the equivalence of (1) and (2).
(2) ↔ (3): Because every entry of eAtB is, as discussed at the end of Section 4.2, an

analytical function of t , if Wc(t) is nonsingular for some t , then it is nonsingular for all t

in (−∞, ∞). See Reference [6, p. 554]. Because of the equivalence of the two forms in
(6.2), (6.8) implies that Wc(t) is nonsingular if and only if there exists no n × 1 nonzero
vector v such that

v′eAtB = 0 for all t (6.9)

Now we show that if Wc(t) is nonsingular, then the controllability matrix C has full row
rank. Suppose C does not have full row rank, then there exists an n × 1 nonzero vector v
such that v′C = 0 or

v′AkB = 0 for k = 0, 1, 2, . . . , n − 1

Because eAtB can be expressed as a linear combination of {B, AB, . . . , An−1B} (Theorem
3.5), we conclude v′eAtB = 0. This contradicts the nonsingularity assumption of Wc(t).
Thus Condition (2) implies Condition (3). To show the converse, suppose C has full row
rank but Wc(t) is singular. Then there exists a nonzero v such that (6.9) holds. Setting
t = 0, we have v′B = 0. Differentiating (6.9) and then setting t = 0, we have v′AB = 0.
Proceeding forward yields v′AkB = 0 for k = 0, 1, 2, They can be arranged as

v′[B AB · · · An−1B] = v′C = 0

6.2 Controllability 147

This contradicts the hypothesis that C has full row rank. This shows the equivalence of
(2) and (3).

(3) ↔ (4): If C has full row rank, then the matrix [A − λI B] has full row rank at
every eigenvalue of A. If not, there exists an eigenvalue λ1 and a 1 × n vector q �= 0 such
that

q[A − λ1I B] = 0

which implies qA = λ1q and qB = 0. Thus q is a left eigenvector of A. We compute

qA2 = (qA)A = (λ1q)A = λ2
1q

Proceeding forward, we have qAk = λk
1q. Thus we have

q[B AB · · · An−1B] = [qB λ1qB · · · λn−1
1 qB] = 0

This contradicts the hypothesis that C has full row rank.
In order to show that ρ(C) < n implies ρ([A − λI B]) < n at some eigenvalue λ1

of A, we need Theorems 6.2 and 6.6, which will be established later. Theorem 6.2 states
that controllability is invariant under any equivalence transformation. Therefore we may
show ρ([Ā − λI B̄]) < n at some eigenvalue of Ā, where (Ā, B̄) is equivalent to (A, B).
Theorem 6.6 states that if the rank of C is less than n or ρ(C) = n − m, for some integer
m ≥ 1, then there exists a nonsingular matrix P such that

Ā = PAP−1 =
[

Āc Ā12

0 Āc̄

]
B̄ = PB =

[
B̄c

0

]

where Āc̄ is m × m. Let λ1 be an eigenvalue of Āc̄ and q1 be a corresponding 1 × m

nonzero left eigenvector or q1Āc̄ = λ1q1. Then we have q1(Āc̄ −λ1I) = 0. Now we form
the 1 × n vector q := [0 q1]. We compute

q[Ā − λ1I B̄] = [0 q1]

[
Āc − λ1I Ā12 B̄c

0 Āc̄ − λ1I 0

]
= 0 (6.10)

which implies ρ([Ā − λI B̄]) < n and, consequently, ρ([A − λI B]) < n at some
eigenvalue of A. This establishes the equivalence of (3) and (4).

(2) ↔ (5): If A is stable, then the unique solution of (6.4) can be expressed as in (6.5)
(Theorem 5.6). The Gramian Wc is always positive semidefinite. It is positive definite if
and only if Wc is nonsingular. This establishes the equivalence of (2) and (5). Q.E.D.

Example 6.2 Consider the inverted pendulum studied in Example 2.8. Its state equation was
developed in (2.27). Suppose for a given pendulum, the equation becomes

ẋ =




0 1 0 0

0 0 −1 0

0 0 0 1

0 0 5 0


 x +




0

1

0

−2


 u

y = [1 0 0 0]x

(6.11)

148 CONTROLLABILITY AND OBSERVABILITY

We compute

C = [B AB A2B A3B] =




0 1 0 2

1 0 2 0

0 −2 0 −10

−2 0 −10 0




This matrix can be shown to have rank 4; thus the system is controllable. Therefore, if x3 = θ

deviates from zero slightly, we can find a control u to push it back to zero. In fact, a control
exists to bring x1 = y, x3, and their derivatives back to zero. This is consistent with our
experience of balancing a broom on our palm.

The MATLAB functions ctrb and gram will generate the controllability matrix and
controllability Gramian. Note that the controllability Gramian is not computed from (6.5); it is
obtained by solving a set of linear algebraic equations. Whether a state equation is controllable
can then be determined by computing the rank of the controllability matrix or Gramian by
using rank in MATLAB.

Example 6.3 Consider the platform system shown in Fig. 6.3; it can be used to study
suspension systems of automobiles. The system consists of one platform; both ends of the
platform are supported on the ground by means of springs and dashpots, which provide
viscous friction. The mass of the platform is assumed to be zero; thus the movements of
the two spring systems are independent and half of the force is applied to each spring
system. The spring constants of both springs are assumed to be 1 and the viscous friction
coefficients are assumed to be 2 and 1 as shown. If the displacements of the two spring
systems from equilibrium are chosen as state variables x1 and x2, then we have x1 + 2ẋ1 = u

and x2 + ẋ2 = u or

ẋ =
[−0.5 0

0 −1

]
x +

[
0.5

1

]
u (6.12)

This state equation describes the system.
Now if the initial displacements are different from zero, and if no force is applied, the

platform will return to zero exponentially. In theory, it will take an infinite time for xi to equal
0 exactly. Now we pose the problem. If x1(0) = 10 and x2(0) = −1, can we apply a force
to bring the platform to equilibrium in 2 seconds? The answer does not seem to be obvious
because the same force is applied to the two spring systems.

x1

2u

x2

Spring SpringDamping
coefficient
2

Damping
coefficient
1

constant constant
1 1

Figure 6.3 Platform system.

6.2 Controllability 149

For Equation (6.12), we compute

ρ([B AB]) = ρ

[
0.5 −0.25

1 −1

]
= 2

Thus the equation is controllable and, for any x(0), there exists an input that transfers x(0) to
0 in 2 seconds or in any finite time. We compute (6.2) and (6.7) for this system at t1 = 2:

Wc(2) =
∫ 2

0

([
e−0.5τ 0

0 e−τ

] [
0.5

1

]
[0.5 1]

[
e−0.5τ 0

0 e−τ

])
dτ

=
[

0.2162 0.3167

0.3167 0.4908

]

and

u1(t) = −[0.5 1]

[
e−0.5(2−t) 0

0 e−(2−t)

]
W−1

c (2)

[
e−1 0

0 e−2

] [
10

−1

]

= −58.82e0.5t + 27.96et

for t in [0, 2]. This input force will transfer x(0) = [10 − 1]′ to [0 0]′ in 2 seconds as shown
in Fig. 6.4(a) in which the input is also plotted. It is obtained by using the MATLAB function
lsim, an acronym for linear simulation. The largest magnitude of the input is about 45.

Figure 6.4(b) plots the input u2 that transfers x(0) = [10 − 1]′ to 0 in 4 seconds. We see
that the smaller the time interval, the larger the input magnitude. If no restriction is imposed on
the input, we can transfer x(0) to zero in an arbitrarily small time interval; however, the input
magnitude may become very large. If some restriction is imposed on the input magnitude, then
we cannot achieve the transfer as fast as desired. For example, if we require |u(t)| < 9, for
all t , in Example 6.3, then we cannot transfer x(0) to 0 in less than 4 seconds. We remark that
the input u(t) in (6.7) is called the minimal energy control in the sense that for any other input
ū(t) that achieves the same transfer, we have∫ t1

t0

ū′(t)ū(t) dt ≥
∫ t1

t0

u′(t)u(t) dt

x1

x1

x2

x2

u1 u2

− −20 5

20

60 10

− −40 10

0

0 00.5 11.5 31 22 4

0

40
5

(a) (b)

Figure 6.4 Transfer x(0) = [10 − 1]′ to [0 0]′.

150 CONTROLLABILITY AND OBSERVABILITY

Its proof can be found in Reference [6, pp. 556–558].

Example 6.4 Consider again the platform system shown in Fig. 6.3. We now assume that the
viscous friction coefficients and spring constants of both spring systems all equal 1. Then the
state equation that describes the system becomes

ẋ =
[−1 0

0 −1

]
x +

[
1

1

]
u

Clearly we have

ρ(C) = ρ

[
1 −1

1 −1

]
= 1

and the state equation is not controllable. If x1(0) �= x2(0), no input can transfer x(0) to zero
in a finite time.

6.2.1 Controllability Indices

Let A and B be n×n and n×p constant matrices. We assume that B has rank p or full column
rank. If B does not have full column rank, there is a redundancy in inputs. For example, if
the second column of B equals the first column of B, then the effect of the second input
on the system can be generated from the first input. Thus the second input is redundant. In
conclusion, deleting linearly dependent columns of B and the corresponding inputs will not
affect the control of the system. Thus it is reasonable to assume that B has full column rank.

If (A, B) is controllable, its controllability matrix C has rank n and, consequently, n

linearly independent columns. Note that there are np columns in C ; therefore it is possible to
find many sets of n linearly independent columns in C . We discuss in the following the most
important way of searching these columns; the search also happens to be most natural. Let bi

be the ith column of B. Then C can be written explicitly as

C = [b1 · · · bp

...Ab1 · · · Abp

... · · · ...An−1b1 · · · An−1bp] (6.13)

Let us search linearly independent columns of C from left to right. Because of the pattern of
C , if Aibm depends on its left-hand-side (LHS) columns, then Ai+1bm will also depend on its
LHS columns. It means that once a column associated with bm becomes linearly dependent,
then all columns associated with bm thereafter are linearly dependent. Let µm be the number
of the linearly independent columns associated with bm in C . That is, the columns

bm, Abm, . . . , Aµm−1bm

are linearly independent in C and Aµm+ibm are linearly dependent for i = 0, 1, It is clear
that if C has rank n, then

µ1 + µ2 + · · · + µp = n (6.14)

The set {µ1, µ2, . . . , µp} is called the controllability indices and

µ = max (µ1, µ2, . . . , µp)

6.2 Controllability 151

is called the controllability index of (A, B). Or, equivalently, if (A, B) is controllable, the
controllability index µ is the least integer such that

ρ(Cµ) = ρ([B AB · · · Aµ−1B]) = n (6.15)

Now we give a range of µ. If µ1 = µ2 = · · · = µp, then n/p ≤ µ. If all µm, except
one, equal 1, then µ = n − (p − 1); this is the largest possible µ. Let n̄ be the degree of the
minimal polynomial of A. Then, by definition, there exist αi such that

An̄ = α1An̄−1 + α2An̄−2 + · · · + αn̄I

which implies that An̄B can be written as a linear combination of {B, AB, . . . , An̄−1B}. Thus
we conclude

n/p ≤ µ ≤ min(n̄, n − p + 1) (6.16)

where ρ(B) = p. Because of (6.16), in checking controllability, it is unnecessary to check
the n × np matrix C . It is sufficient to check a matrix of lesser columns. Because the degree
of the minimal polynomial is generally not available—whereas the rank of B can readily be
computed—we can use the following corollary to check controllability. The second part of the
corollary follows Theorem 3.8.

� Corollary 6.1

The n-dimensional pair (A, B) is controllable if and only if the matrix

Cn−p+1 := [B AB · · · An−pB] (6.17)

where ρ(B) = p, has rank n or the n × n matrix Cn−p+1C ′
n−p+1 is nonsingular.

Example 6.5 Consider the satellite system studied in Fig. 2.13. Its linearized state equation
was developed in (2.29). From the equation, we can see that the control of the first four state
variables by the first two inputs and the control of the last two state variables by the last input
are decoupled; therefore we can consider only the following subequation of (2.29):

ẋ =




0 1 0 0

3 0 0 2

0 0 0 1

0 −2 0 0


 x +




0 0

1 0

0 0

0 1


u

y =
[

1 0 0 0

0 0 1 0

]
x

(6.18)

where we have assumed, for simplicity, ωo = m = ro = 1. The controllability matrix of (6.18)
is of order 4 × 8. If we use Corollary 6.1, then we can check its controllability by using the
following 4 × 6 matrix:

[B AB A2B] =




0 0 1 0 0 2

1 0 0 2 −1 0

0 0 0 1 −2 0

0 1 −2 0 0 −4


 (6.19)

152 CONTROLLABILITY AND OBSERVABILITY

It has rank 4. Thus (6.18) is controllable. From (6.19), we can readily verify that the control-
lability indices are 2 and 2, and the controllability index is 2.

� Theorem 6.2

The controllability property is invariant under any equivalence transformation.

Proof: Consider the pair (A, B) with controllability matrix

C = [B AB · · · An−1B]

and its equivalent pair (Ā, B̄) with Ā = PAP−1 and B̄ = PB, where P is a nonsingular
matrix. The controllability matrix of (Ā, B̄) is

C̄ = [B̄ ĀB̄ · · · Ā
n−1

B̄]

= [PB PAP−1PB · · · PAn−1P−1PB]

= [PB PAB · · · PAn−1B]

= P[B AB · · · An−1B] = PC (6.20)

Because P is nonsingular, we have ρ(C) = ρ(C̄) (see Equation (3.62)). This establishes
Theorem 6.2. Q.E.D.

� Theorem 6.3

The set of the controllability indices of (A, B) is invariant under any equivalence transformation and
any reordering of the columns of B.

Proof: Let us define

Ck = [B AB · · · Ak−1B] (6.21)

Then we have, following the proof of Theorem 6.2,

ρ(Ck) = ρ(C̄k)

for k = 0, 1, 2, Thus the set of controllability indices is invariant under any
equivalence transformation.

The rearrangement of the columns of B can be achieved by

B̂ = BM

where M is a p × p nonsingular permutation matrix. It is straightforward to verify

Ĉk := [B̂ AB̂ · · · Ak−1B̂] = Ckdiag(M, M, . . . , M)

Because diag (M, M, . . . , M) is nonsingular, we have ρ(Ĉk) = ρ(Ck) for k = 0, 1,

Thus the set of controllability indices is invariant under any reordering of the columns of
B. Q.E.D.

Because the set of the controllability indices is invariant under any equivalence transfor-
mation and any rearrangement of the inputs, it is an intrinsic property of the system that the

6.3 Observability 153

state equation describes. The physical significance of the controllability index is not transparent
here; but it becomes obvious in the discrete-time case. As we will discuss in later chapters, the
controllability index can also be computed from transfer matrices and dictates the minimum
degree required to achieve pole placement and model matching.

6.3 Observability

The concept of observability is dual to that of controllability. Roughly speaking, controllability
studies the possibility of steering the state from the input; observability studies the possibility
of estimating the state from the output. These two concepts are defined under the assumption
that the state equation or, equivalently, all A, B, C, and D are known. Thus the problem of
observability is different from the problem of realization or identification, which is to determine
or estimate A, B, C, and D from the information collected at the input and output terminals.

Consider the n-dimensional p-input q-output state equation

ẋ = Ax + Bu

y = Cx + Du
(6.22)

where A, B, C, and D are, respectively, n × n, n × p, q × n, and q × p constant matrices.

Definition 6.O1 The state equation (6.22) is said to be observable if for any unknown
initial state x(0), there exists a finite t1 > 0 such that the knowledge of the input u and
the output y over [0, t1] suffices to determine uniquely the initial state x(0). Otherwise,
the equation is said to be unobservable.

Example 6.6 Consider the network shown in Fig. 6.5. If the input is zero, no matter what the
initial voltage across the capacitor is, the output is identically zero because of the symmetry
of the four resistors. We know the input and output (both are identically zero), but we cannot
determine uniquely the initial state. Thus the network or, more precisely, the state equation
that describes the network is not observable.

Example 6.7 Consider the network shown in Fig. 6.6(a). The network has two state variables:
the current x1 through the inductor and the voltage x2 across the capacitor. The input u is a

Figure 6.5 Unobservable network.

u

1
 1

1
 1

+

+

+

−
−

−

1F

x
y

154 CONTROLLABILITY AND OBSERVABILITY

u
2 2

1 1

+ ++ +

− −− −

1 H 1 H

1 F 1 F

x1 x1

(a) (b)

x2 y x2 y

Figure 6.6 Unobservable network.

current source. If u = 0, the network reduces to the one shown in Fig. 6.6(b). If x1(0) = a �= 0
and x2 = 0, then the output is identically zero. Any x(0) = [a 0]′ and u(t) ≡ 0 yield the same
output y(t) ≡ 0. Thus there is no way to determine the initial state [a 0]′ uniquely and the
equation that describes the network is not observable.

The response of (6.22) excited by the initial state x(0) and the input u(t) was derived in
(4.7) as

y(t) = CeAtx(0) + C
∫ t

0
eA(t−τ)Bu(τ) dτ + Du(t) (6.23)

In the study of observability, the output y and the input u are assumed to be known; the inital
state x(0) is the only unknown. Thus we can write (6.23) as

CeAtx(0) = ȳ(t) (6.24)

where

ȳ(t) := y(t) − C
∫ t

0
eA(t−τ)Bu(τ) dτ − Du(t)

is a known function. Thus the observability problem reduces to solving x(0) from (6.24). If
u ≡ 0, then ȳ(t) reduces to the zero-input response CeAtx(0). Thus Definition 6.O1 can be
modified as follows: Equation (6.22) is observable if and only if the initial state x(0) can be
determined uniquely from its zero-input response over a finite time interval.

Next we discuss how to solve x(0) from (6.24). For a fixed t , CeAt is a q × n constant
matrix, and ȳ(t) is a q × 1 constant vector. Thus (6.24) is a set of linear algebraic equations
with n unknowns. Because of the way it is developed, for every fixed t , ȳ(t) is in the range
space of CeAt and solutions always exist in (6.24). The only question is whether the solution
is unique. If q < n, as is the case in general, the q × n matrix CeAt has rank at most q and,
consequently, has nullity n − q or larger. Thus solutions are not unique (Theorem 3.2). In
conclusion, we cannot find a unique x(0) from (6.24) at an isolated t . In order to determine
x(0) uniquely from (6.24), we must use the knowledge of u(t) and y(t) over a nonzero time
interval as stated in the next theorem.

6.3 Observability 155

� Theorem 6.4

The state equation (6.22) is observable if and only if the n × n matrix

Wo(t) =
∫ t

0
eA′τ C′CeAτ dτ (6.25)

is nonsingular for any t > 0.

Proof: We premultiply (6.24) by eA′tC′ and then integrate it over [0, t1] to yield(∫ t1

0
eA′tC′CeAt dt

)
x(0) =

∫ t1

0
eA′tC′ȳ(t) dt

If Wo(t1) is nonsingular, then

x(0) = W−1
o (t1)

∫ t1

0
eA′tC′ȳ(t) dt (6.26)

This yields a unique x(0). This shows that if Wo(t), for any t > 0, is nonsingular, then
(6.22) is observable. Next we show that if Wo(t1) is singular or, equivalently, positive
semidefinite for all t1, then (6.22) is not observable. If Wo(t1) is positive semidefinite,
there exists an n × 1 nonzero constant vector v such that

v′Wo(t1)v =
∫ t1

0
v′eA′τ C′CeAτ v dτ

=
∫ t1

0
||CeAτ v||2dτ = 0

which implies

CeAτ v ≡ 0 (6.27)

for all t in [0, t1]. If u ≡ 0, then x1(0) = v �= 0 and x2(0) = 0 both yield the same

y(t) = CeAtxi (0) ≡ 0

Two different initial states yield the same zero-input response; therefore we cannot
uniquely determine x(0). Thus (6.22) is not observable. This completes the proof of
Theorem 6.4. Q.E.D.

We see from this theorem that observability depends only on A and C. This can also be
deduced from Definition 6.O1 by choosing u(t) ≡ 0. Thus observability is a property of the
pair (A, C) and is independent of B and D. As in the controllability part, if Wo(t) is nonsingular
for some t , then it is nonsingular for every t and the initial state can be computed from (6.26)
by using any nonzero time interval.

� Theorem 6.5 (Theorem of duality)

The pair (A, B) is controllable if and only if the pair (A′, B′) is observable.

156 CONTROLLABILITY AND OBSERVABILITY

Proof: The pair (A, B) is controllable if and only if

Wc(t) =
∫ t

0
eAτ BB′eA′τ dτ

is nonsingular for any t . The pair (A′, B′) is observable if and only if, by replacing A by
A′ and C by B′ in (6.25),

Wo(t) =
∫ t

0
eAτ BB′eA′τ dτ

is nonsingular for any t . The two conditions are identical and the theorem follows.
Q.E.D.

We list in the following the observability counterpart of Theorem 6.1. It can be proved
either directly or by applying the theorem of duality.

� Theorem 6.O1

The following statements are equivalent.

1. The n-dimensional pair (A, C) is observable.

2. The n × n matrix

Wo(t) =
∫ t

0
eA′τ C′CeAτ dτ (6.28)

is nonsingular for any t > 0.

3. The nq × n observability matrix

O =




C
CA
...

CAn−1


 (6.29)

has rank n (full column rank). This matrix can be generated by calling obsv in MATLAB.

4. The (n + q) × n matrix [
A − λI

C

]

has full column rank at every eigenvalue, λ, of A.

5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

A′Wo + WoA = −C′C (6.30)

is positive definite. The solution is called the observability Gramian and can be expressed as

Wo =
∫ ∞

0
eA′τ C′CeAτ dτ (6.31)

6.3 Observability 157

6.3.1 Observability Indices

Let A and C be n×n and q ×n constant matrices. We assume that C has rank q (full row rank).
If C does not have full row rank, then the output at some output terminal can be expressed
as a linear combination of other outputs. Thus the output does not offer any new information
regarding the system and the terminal can be eliminated. By deleting the corresponding row,
the reduced C will then have full row rank.

If (A, C) is observable, its observability matrix O has rank n and, consequently, n linearly
independent rows. Let ci be the ith row of C. Let us search linearly independent rows of O in
order from top to bottom. Dual to the controllability part, if a row associated with cm becomes
linearly dependent on its upper rows, then all rows associated with cm thereafter will also be
dependent. Let νm be the number of the linearly independent rows associated with cm. It is
clear that if O has rank n, then

ν1 + ν2 + · · · + νq = n (6.32)

The set {ν1, ν2, . . . , νq} is called the observability indices and

ν = max(ν1, ν2, . . . , νq) (6.33)

is called the observability index of (A, C). If (A, C) is observable, it is the least integer
such that

ρ(Oν) :=




C
CA
CA2

...

CAν−1


 = n

Dual to the controllability part, we have

n/q ≤ ν ≤ min(n̄, n − q + 1) (6.34)

where ρ(C) = q and n̄ is the degree of the minimal polynomial of A.

� Corollary 6.O1

The n-dimensional pair (A, C) is observable if and only if the matrix

On−q+1 =




C
CA
...

CAn−q


 (6.35)

where ρ(C) = q , has rank n or the n × n matrix O′
n−q+1On−q+1 is nonsingular.

� Theorem 6.O2

The observability property is invariant under any equivalence transformation.

158 CONTROLLABILITY AND OBSERVABILITY

� Theorem 6.O3

The set of the observability indices of (A, C) is invariant under any equivalence transformation and any
reordering of the rows of C.

Before concluding this section, we discuss a different way of solving (6.24). Differenti-
ating (6.24) repeatedly and setting t = 0, we can obtain


C

CA
...

CAν−1


 x(0) =




ȳ(0)

˙̄y(0)

...

ȳ(ν−1)(0)




or

Oνx(0) = ỹ(0) (6.36)

where ȳ(i)(t) is the ith derivative of ȳ(t), and ỹ(0) := [ȳ′(0) ˙̄y′
(0) · · · (ȳ(ν−1))′]′. Equation

(6.36) is a set of linear algebraic equations. Because of the way it is developed, ỹ(0) must lie
in the range space of Oν . Thus a solution x(0) exists in (6.36). If (A, C) is observable, then
Oν has full column rank and, following Theorem 3.2, the solution is unique. Premultiplying
(6.36) by O′

ν and then using Theorem 3.8, we can obtain the solution as

x(0) = [O′
νOν

]−1 O′
ν ỹ(0) (6.37)

We mention that in order to obtain ˙̄y(0), ¨̄y(0), . . ., we need knowledge of ȳ(t) in the neigh-
borhood of t = 0. This is consistent with the earlier assertion that we need knowledge of ȳ(t)

over a nonzero time interval in order to determine x(0) uniquely from (6.24). In conclusion,
the initial state can be computed using (6.26) or (6.37).

The output y(t) measured in practice is often corrupted by high-frequency noise. Because

● differentiation will amplify high-frequency noise and

● integration will suppress or smooth high-frequency noise,

the result obtained from (6.36) or (6.37) may differ greatly from the actual initial state. Thus
(6.26) is preferable to (6.36) in computing initial states.

The physical significance of the observability index can be seen from (6.36). It is the
smallest integer in order to determine x(0) uniquely from (6.36) or (6.37). It also dictates the
minimum degree required to achieve pole placement and model matching, as we will discuss
in Chapter 9.

6.4 Canonical Decomposition

This section discusses canonical decomposition of state equations. This fundamental result will
be used to establish the relationship between the state-space description and the transfer-matrix
description. Consider

6.4 Canonical Decomposition 159

ẋ = Ax + Bu

y = Cx + Du
(6.38)

Let x̄ = Px, where P is a nonsingular matrix. Then the state equation

˙̄x = Āx̄ + B̄u

y = C̄x̄ + D̄u
(6.39)

with Ā = PAP−1, B̄ = PB, C̄ = CP−1, and D̄ = D is equivalent to (6.38). All properties of
(6.38), including stability, controllability, and observability, are preserved in (6.39). We also
have

C̄ = PC Ō = OP−1

� Theorem 6.6

Consider the n-dimensional state equation in (6.38) with

ρ(C) = ρ([B AB · · · An−1B]) = n1 < n

We form the n × n matrix

P−1 := [q1 · · · qn1 · · · qn]

where the first n1 columns are any n1 linearly independent columns of C , and the remaining columns
can arbitrarily be chosen as long as P is nonsingular. Then the equivalence transformation x̄ = Px or
x = P−1x̄ will transform (6.38) into[˙̄xc

˙̄xc̄

]
=
[

Āc Ā12

0 Āc̄

] [
x̄c

x̄c̄

]
+
[

B̄c

0

]
u

y = [C̄c C̄c̄]

[
x̄c

x̄c̄

]
+ Du

(6.40)

where Āc is n1 × n1 and Āc̄ is (n − n1) × (n − n1), and the n1-dimensional subequation of (6.40),

˙̄xc = Ācx̄c + B̄cu

ȳ = C̄cx̄c + Du
(6.41)

is controllable and has the same transfer matrix as (6.38).

Proof: As discussed in Section 4.3, the transformation x = P−1x̄ changes the basis
of the state space from the orthonormal basis in (3.8) to the columns of Q := P−1 or
{q1, . . . , qn1 , . . . , qn}. The ith column of Ā is the representation of Aqi with respect
to {q1, . . . , qn1 , . . . , qn}. Now the vectors Aqi , for i = 1, 2, . . . , n1, are linearly
dependent on the set {q1, . . . , qn1}; they are linearly independent of {qn1+1, . . . , qn}.
Thus the matrix Ā has the form shown in (6.40). The columns of B̄ are the representation
of the columns of B with respect to {q1, . . . , qn1 , . . . , qn}. Now the columns of B depend
only on {q1, . . . , qn1}; thus B̄ has the form shown in (6.40). We mention that if the n×p

160 CONTROLLABILITY AND OBSERVABILITY

matrix B has rank p and if its columns are chosen as the first p columns of P−1, then the
upper part of B̄ is the unit matrix of order p.

Let C̄ be the controllability matrix of (6.40). Then we have ρ(C) = ρ(C̄) = n1. It
is straightforward to verify

C̄ =
[

B̄c ĀcB̄c · · · Ā
n1

c B̄c · · · Ā
n−1
c B̄c

0 0 · · · 0 · · · 0

]

=
[

C̄c Ā
n1

c B̄c · · · Ā
n−1
c B̄c

0 0 · · · 0

]

where C̄c is the controllability matrix of (Āc, B̄c). Because the columns of Ā
k

cB̄c, for
k ≥ n1, are linearly dependent on the columns of C̄c, the condition ρ(C) = n1 implies
ρ(C̄c) = n1. Thus the n1-dimensional state equation in (6.41) is controllable.

Next we show that (6.41) has the same transfer matrix as (6.38). Because (6.38) and
(6.40) have the same transfer matrix, we need to show only that (6.40) and (6.41) have
the same transfer matrix. By direct verification, we can show[

sI − Āc −Ā12

0 sI − Āc̄

]−1

=
[

(sI − Āc)
−1 M

0 (sI − Āc̄)
−1

]
(6.42)

where

M = (sI − Āc)
−1Ā12(sI − Āc̄)

−1

Thus the transfer matrix of (6.40) is

[
C̄c C̄c̄

] [sI − Āc −Ā12

0 sI − Āc̄

]−1 [B̄c

0

]
+ D

= [C̄c C̄c̄

] [(sI − Āc)
−1 M

0 (sI − Āc̄)
−1

] [
B̄c

0

]
+ D

= C̄c(sI − Āc)
−1B̄c + D

which is the transfer matrix of (6.41). This completes the proof of Theorem 6.6. Q.E.D.

In the equivalence transformation x̄ = Px, the n-dimensional state space is divided into
two subspaces. One is the n1-dimensional subspace that consists of all vectors of the form
[x̄′

c 0′]′; the other is the (n − n1)-dimensional subspace that consists of all vectors of the form
[0′ x̄′

c̄]′. Because (6.41) is controllable, the input u can transfer x̄c from any state to any other
state. However, the input u cannot control x̄c̄ because, as we can see from (6.40), u does not
affect x̄c̄ directly, nor indirectly through the state x̄c. By dropping the uncontrollable state
vector, we obtain a controllable state equation of lesser dimension that is zero-state equivalent
to the original equation.

Example 6.8 Consider the three-dimensional state equation

ẋ =

 1 1 0

0 1 0

0 1 1


 x +


 0 1

1 0

0 1


 u y = [1 1 1]x (6.43)

6.4 Canonical Decomposition 161

The rank of B is 2; therefore we can use C2 = [B AB], instead of C = [B AB A2B], to check
the controllability of (6.43) (Corollary 6.1). Because

ρ(C2) = ρ([B AB]) = ρ


 0 1 1 1

1 0 1 0

0 1 1 1


 = 2 < 3

the state equation in (6.43) is not controllable. Let us choose

P−1 = Q :=

 0 1 1

1 0 0

0 1 0




The first two columns of Q are the first two linearly independent columns of C2; the last column
is chosen arbitrarily to make Q nonsingular. Let x̄ = Px. We compute

Ā = PAP−1 =

 0 1 0

0 0 1

1 0 −1




 1 1 0

0 1 0

0 1 1




 0 1 1

1 0 0

0 1 0




=




1 0
... 0

1 1
... 0

· · · · · · · · · · · ·
0 0

... 1




B̄ = PB =

 0 1 0

0 0 1

1 0 −1




 0 1

1 0

0 1


 =




1 0

0 1

· · · · · ·
0 0




C̄ = CP−1 = [1 1 1]


 0 1 1

1 0 0

0 1 0


 = [1 2

... 1]

Note that the 1 × 2 submatrix Ā21 of Ā and B̄c̄ are zero as expected. The 2 × 1 submatrix
Ā12 happens to be zero; it could be nonzero. The upper part of B̄ is a unit matrix because the
columns of B are the first two columns of Q. Thus (6.43) can be reduced to

˙̄xc =
[

1 0

1 1

]
x̄c +

[
1 0

0 1

]
u y = [1 2]x̄c

This equation is controllable and has the same transfer matrix as (6.43).

The MATLAB function ctrbf transforms (6.38) into (6.40) except that the order of the
columns in P−1 is reversed. Thus the resulting equation has the form[

Āc̄ 0
Ā21 Āc

] [
0

B̄c

]

Theorem 6.6 is established from the controllability matrix. In actual computation, it is unnec-
essary to form the controllability matrix. The result can be obtained by carrying out a sequence

162 CONTROLLABILITY AND OBSERVABILITY

of similarity transformations to transform [B A] into a Hessenberg form. See Reference [6,
pp. 220–222]. This procedure is efficient and numerically stable and should be used in actual
computation.

Dual to Theorem 6.6, we have the following theorem for unobservable state equations.

� Theorem 6.O6

Consider the n-dimensional state equation in (6.38) with

ρ(O) = ρ




C
CA
...

CAn−1


 = n2 < n

We form the n × n matrix

P =




p1

...

pn2

...

pn




where the first n2 rows are any n2 linearly independent rows of O, and the remaining rows can be chosen
arbitrarily as long as P is nonsingular. Then the equivalence transformation x̄ = Px will transform
(6.38) into [˙̄xo

˙̄xō

]
=
[

Āo 0
Ā21 Āō

] [
x̄o

x̄ō

]
+
[

B̄o

B̄ō

]
u

y = [C̄o 0]

[
x̄o

x̄ō

]
+ Du (6.44)

where Āo is n2 × n2 and Āō is (n − n2) × (n − n2), and the n2-dimensional subequation of (6.44),

˙̄xo = Āox̄o + B̄ou

ȳ = C̄ox̄o + Du

is observable and has the same transfer matrix as (6.38).

In the equivalence transformation x̄ = Px, the n-dimensional state space is divided
into two subspaces. One is the n2-dimensional subspace that consists of all vectors of the
form [x̄′

o 0′]′; the other is the (n − n2)-dimensional subspace consisting of all vectors of the
form [0′ x̄′

ō]′. The state x̄o can be detected from the output. However, x̄ō cannot be detected
from the output because, as we can see from (6.44), it is not connected to the output either
directly, or indirectly through the state x̄o. By dropping the unobservable state vector, we obtain
an observable state equation of lesser dimension that is zero-state equivalent to the original
equation. The MATLAB function obsvf is the counterpart of ctrbf. Combining Theorems
6.6 and 6.06, we have the following Kalman decomposition theorem.

6.4 Canonical Decomposition 163

� Theorem 6.7

Every state-space equation can be transformed, by an equivalence transformation, into the following
canonical form 


˙̄xco

˙̄xcō

˙̄xc̄o

˙̄xc̄ō


 =




Āco 0 Ā13 0
Ā21 Ācō Ā23 Ā24

0 0 Āc̄o 0
0 0 Ā43 Āc̄ō






x̄co

x̄cō

x̄c̄o

x̄c̄ō


+




B̄co

B̄cō

0
0


u

y = [C̄co 0 C̄c̄o 0]x̄ + Du

(6.45)

where the vector x̄co is controllable and observable, x̄cō is controllable but not observable, x̄c̄o is
observable but not controllable, and x̄c̄ō is neither controllable nor observable. Furthermore, the state
equation is zero-state equivalent to the controllable and observable state equation

˙̄xco = Ācox̄co + B̄cou

y = C̄cox̄co + Du
(6.46)

and has the transfer matrix

Ĝ(s) = C̄co(sI − Āco)
−1B̄co + D

This theorem can be illustrated symbolically as shown in Fig. 6.7. The equation is first
decomposed, using Theorem 6.6, into controllable and uncontrollable subequations. We then
decompose each subequation, using Theorem 6.O6, into observable and unobservable parts.
From the figure, we see that only the controllable and observable part is connected to both
the input and output terminals. Thus the transfer matrix describes only this part of the system.
This is the reason that the transfer-function description and the state-space description are not
necessarily equivalent. For example, if any A-matrix other than Āco has an eigenvalue with a

Figure 6.7 Kalman decomposition.

164 CONTROLLABILITY AND OBSERVABILITY

positive real part, then some state variable may grow without bound and the system may burn
out. This phenomenon, however, cannot be detected from the transfer matrix.

The MATLAB function minreal, an acronym for minimal realization, can reduce any
state equation to (6.46). The reason for calling it minimal realization will be given in the next
chapter.

Example 6.9 Consider the network shown in Fig. 6.8(a). Because the input is a current source,
responses due to the initial conditions in C1 and L1 will not appear at the output. Thus the state
variables associated with C1 and L1 are not observable; whether or not they are controllable
is immaterial in subsequent discussion. Similarly, the state variable associated with L2 is not
controllable. Because of the symmetry of the four 1-
 resistors, the state variable associated
with C2 is neither controllable nor observable. By dropping the state variables that are either
uncontrollable or unobservable, the network in Fig. 6.8(a) can be reduced to the one in Fig.
6.8(b). The current in each branch is u/2; thus the output y equals 2 · (u/2) or y = u. Thus
the transfer function of the network in Fig. 6.8(a) is ĝ(s) = 1.

If we assign state variables as shown, then the network can be described by

ẋ =




0 −0.5 0 0

1 0 0 0

0 0 −0.5 0

0 0 0 −1


 x +




0.5

0

0

0


 u

y = [0 0 0 1]x + u

Because the equation is already of the form shown in (6.40), it can be reduced to the following
controllable state equation

ẋc =
[

0 −0.5

1 0

]
xc +

[
0.5

0

]
u

y = [0 0]xc + u

The output is independent of xc; thus the equation can be further reduced to y = u. This is
what we will obtain by using the MATLAB function minreal.

6.5 Conditions in Jordan-Form Equations

Controllability and observability are invariant under any equivalence transformation. If a state
equation is transformed into Jordan form, then the controllability and observability conditions
become very simple and can often be checked by inspection. Consider the state equation

ẋ = Jx + Bu

y = Cx
(6.47)

6.5 Conditions in Jordan-Form Equations 165

Figure 6.8 Networks.

where J is in Jordan form. To simplify discussion, we assume that J has only two distinct
eigenvalues λ1 and λ2 and can be written as

J = diag (J1, J2)

where J1 consists of all Jordan blocks associated with λ1 and J2 consists of all Jordan blocks
associated with λ2. Again to simplify discussion, we assume that J1 has three Jordan blocks
and J2 has two Jordan blocks or

J1 = diag (J11, J12, J13) J2 = diag (J21, J22)

The row of B corresponding to the last row of Jij is denoted by blij . The column of C
corresponding to the first column of Jij is denoted by cf ij .

� Theorem 6.8

1. The state equation in (6.47) is controllable if and only if the three row vectors {bl11, bl12, bl13} are
linearly independent and the two row vectors {bl21, bl22} are linearly independent.

2. The state equation in (6.47) is observable if and only if the three column vectors {cf 11, cf 12, cf 13}
are linearly independent and the two column vectors {cf 21, cf 22} are linearly independent.

We discuss first the implications of this theorem. If a state equation is in Jordan form,
then the controllability of the state variables associated with one eigenvalue can be checked
independently from those associated with different eigenvalues. The controllability of the state
variables associated with the same eigenvalue depends only on the rows of B corresponding
to the last row of all Jordan blocks associated with the eigenvalue. All other rows of B play no
role in determining the controllability. Similar remarks apply to the observability part except
that the columns of C corresponding to the first column of all Jordan blocks determine the
observability. We use an example to illustrate the use of Theorem 6.8.

166 CONTROLLABILITY AND OBSERVABILITY

Example 6.10 Consider the Jordan-form state equation

ẋ =




λ1 1 0 0 0 0 0
0 λ1 0 0 0 0 0
0 0 λ1 0 0 0 0
0 0 0 λ1 0 0 0
0 0 0 0 λ2 1 0
0 0 0 0 0 λ2 1
0 0 0 0 0 0 λ2




x +




0 0 0
1 0 0
0 1 0
1 1 1
1 2 3
0 1 0
1 1 1




u

y =

 1 1 2 0 0 2 1

1 0 1 2 0 1 1
1 0 2 3 0 2 0


 x

(6.48)

The matrix J has two distinct eigenvalues λ1 and λ2. There are three Jordan blocks, with order
2, 1, and 1, associated with λ1. The rows of B corresponding to the last row of the three Jordan
blocks are [1 0 0], [0 1 0], and [1 1 1]. The three rows are linearly independent. There is only
one Jordan block, with order 3, associated with λ2. The row of B corresponding to the last row
of the Jordan block is [1 1 1], which is nonzero and is therefore linearly independent. Thus we
conclude that the state equation in (6.48) is controllable.

The conditions for (6.48) to be observable are that the three columns [1 1 1]′, [2 1 2]′, and
[0 2 3]′ are linearly independent (they are) and the one column [0 0 0]′ is linearly independent
(it is not). Therefore the state equation is not observable.

Before proving Theorm 6.8, we draw a block diagram to show how the conditions in the
theorem arise. The inverse of (sI − J) is of the form shown in (3.49), whose entries consist
of only 1/(s − λi)

k . Using (3.49), we can draw a block diagram for (6.48) as shown in Fig.
6.9. Each chain of blocks corresponds to one Jordan block in the equation. Because (6.48) has
four Jordan blocks, the figure has four chains. The output of each block can be assigned as a
state variable as shown in Fig. 6.10. Let us consider the last chain in Fig. 6.9. If bl21 = 0, the
state variable xl21 is not connected to the input and is not controllable no matter what values
b221 and b121 assume. On the other hand, if bl21 is nonzero, then all state variables in the
chain are controllable. If there are two or more chains associated with the same eigenvalue,
then we require the linear independence of the first gain vectors of those chains. The chains
associated with different eigenvalues can be checked separately. All discussion applies to the
observability part except that the column vector cf ij plays the role of the row vector blij .

Proof of Theorem 6.8 We prove the theorem by using the condition that the matrix
[A − sI B] or [sI − A B] has full row rank at every eigenvalue of A. In order not to be
overwhelmed by notation, we assume [sI − J B] to be of the form



s − λ1 −1 0 0 0 0 0 b111

0 s − λ1 −1 0 0 0 0 b211

0 0 s − λ1 0 0 0 0 bl11

0 0 0 s − λ1 −1 0 0 b112

0 0 0 0 s − λ1 0 0 bl12

0 0 0 0 0 s − λ2 −1 b121

0 0 0 0 0 0 s − λ2 bl21




(6.49)

6.5 Conditions in Jordan-Form Equations 167

Figure 6.9 Block diagram of (6.48).

i

i

Figure 6.10 Internal structure of 1/(s − λi).

The Jordan-form matrix J has two distinct eigenvalues λ1 and λ2. There are two Jordan
blocks associated with λ1 and one associated with λ2. If s = λ1, (6.49) becomes



0 −1 0 0 0 0 0 b111

0 0 −1 0 0 0 0 b211

0 0 0 0 0 0 0 bl11

0 0 0 0 −1 0 0 b112

0 0 0 0 0 0 0 bl12

0 0 0 0 0 λ1 − λ2 −1 b121

0 0 0 0 0 0 λ1 − λ2 bl21




(6.50)

168 CONTROLLABILITY AND OBSERVABILITY

The rank of the matrix will not change by elementary column operations. We add the
product of the second column of (6.50) by b111 to the last block column. Repeating the
process for the third and fifth columns, we can obtain



0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 bl11

0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 bl12

0 0 0 0 0 λ1 − λ2 −1 b121

0 0 0 0 0 0 λ1 − λ2 bl21




Because λ1 and λ2 are distinct, λ1 − λ2 is nonzero. We add the product of the seventh
column and −bl21/(λ1 −λ2) to the last column and then use the sixth column to eliminate
its right-hand-side entries to yield



0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 bl11

0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 bl12

0 0 0 0 0 λ1 − λ2 0 0
0 0 0 0 0 0 λ1 − λ2 0




(6.51)

It is clear that the matrix in (6.51) has full row rank if and only if bl11 and bl12 are linearly
independent. Proceeding similarly for each eigenvalue, we can establish Theorem 6.8.
Q.E.D.

Consider an n-dimensional Jordan-form state equation with p inputs and q outputs. If
there are m, with m > p, Jordan blocks associated with the same eigenvalue, then m number
of 1 × p row vectors can never be linearly independent and the state equation can never be
controllable. Thus a necessary condition for the state equation to be controllable is m ≤ p.
Similarly, a necessary condition for the state equation to be observable is m ≤ q. For the
single-input or single-output case, we then have the following corollaries.

� Corollary 6.8

A single-input Jordan-form state equation is controllable if and only if there is only one Jordan block
associated with each distinct eigenvalue and every entry of B corresponding to the last row of each Jordan
block is different from zero.

� Corollary 6.O8

A single-output Jordan-form state equation is observable if and only if there is only one Jordan block
associated with each distinct eigenvalue and every entry of C corresponding to the first column of each
Jordan block is different from zero.

6.6 Discrete-Time State Equations 169

Example 6.11 Consider the state equation

ẋ =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 −2


 x +




10
9
0
1


 u

y = [1 0 0 2]x

(6.52)

There are two Jordan blocks, one with order 3 and associated with eigenvalue 0, the other with
order 1 and associated with eigenvalue −2. The entry of B corresponding to the last row of
the first Jordan block is zero; thus the state equation is not controllable. The two entries of C
corresponding to the first column of both Jordan blocks are different from zero; thus the state
equation is observable.

6.6 Discrete-Time State Equations

Consider the n-dimensional p-input q-output state equation

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k]
(6.53)

where A, B, and C are, respectively, n × n, n × p, and q × n real constant matrices.

Definition 6.D1 The discrete-time state equation (6.53) or the pair (A, B) is said to be
controllable if for any initial state x(0) = x0 and any final state x1, there exists an input
sequence of finite length that transfers x0 to x1. Otherwise the equation or (A, B) is
said to be uncontrollable.

� Theorem 6.D1

The following statements are equivalent:

1. The n-dimensional pair (A, B) is controllable.

2. The n × n matrix

Wdc[n − 1] =
n−1∑
m=0

(A)mBB′(A′)m (6.54)

is nonsingular.

3. The n × np controllability matrix

Cd = [B AB A2B · · · An−1B] (6.55)

has rank n (full row rank). The matrix can be generated by calling ctrb in MATLAB.

4. The n × (n + p) matrix [A − λI B] has full row rank at every eigenvalue, λ, of A.

5. If, in addition, all eigenvalues of A have magnitudes less than 1, then the unique solution of

170 CONTROLLABILITY AND OBSERVABILITY

Wdc − AWdcA′ = BB′ (6.56)

is positive definite. The solution is called the discrete controllability Gramian and can be obtained by
using the MATLAB function dgram. The discrete Gramian can be expressed as

Wdc =
∞∑

m=0

AmBB′(A′)m (6.57)

The solution of (6.53) at k = n was derived in (4.20) as

x[n] = Anx[0] +
n−1∑
m=0

An−1−mBu[m]

which can be written as

x[n] − Anx[0] = [B AB · · · An−1B]




u[n − 1]
u[n − 2]

...

u[0]


 (6.58)

It follows from Theorem 3.1 that for any x[0] and x[n], an input sequence exists if and only
if the controllability matrix has full row rank. This shows the equivalence of (1) and (3). The
matrix Wdc[n − 1] can be written as

Wdc[n − 1] = [B AB · · · An−1B]




B′

B′A′
...

B′(A′)n−1




The equivalence of (2) and (3) then follows Theorem 3.8. Note that Wdc[m] is always positive
semidefinite. If it is nonsingular or, equivalently, positive definite, then (6.53) is controllable.
The proof of the equivalence of (3) and (4) is identical to the continuous-time case. Condition
(5) follows Condition (2) and Theorem 5.D6. We see that establishing Theorem 6.D1 is
considerably simpler than establishing Theorem 6.1.

There is one important difference between the continuous- and discrete-time cases. If a
continuous-time state equation is controllable, the input can transfer any state to any other
state in any nonzero time interval, no matter how small. If a discrete-time state equation is
controllable, an input sequence of length n can transfer any state to any other state. If we
compute the controllability index µ as defined in (6.15), then the transfer can be achieved
using an input sequence of length µ. If an input sequence is shorter than µ, it is not possible
to transfer any state to any other state.

Definition 6.D2 The discrete-time state equation (6.53) or the pair (A, C) is said to be
observable if for any unknown initial state x[0], there exists a finite integer k1 > 0 such
that the knowledge of the input sequence u[k] and output sequence y[k] from k = 0 to
k1 suffices to determine uniquely the initial state x[0]. Otherwise, the equation is said
to be unobservable.

6.6 Discrete-Time State Equations 171

� Theorem 6.DO1

The following statements are equivalent:

1. The n-dimensional pair (A, C) is observable.

2. The n × n matrix

Wdo[n − 1] =
n−1∑
m=0

(A′)mC′CAm (6.59)

is nonsingular or, equivalently, positive definite.

3. The nq × n observability matrix

Od =




C
CA
...

CAn−1


 (6.60)

has rank n (full column rank). The matrix can be generated by calling obsv in MATLAB.

4. The (n + q) × n matrix [
A − λI

C

]

has full column rank at every eigenvalue, λ, of A.

5. If, in addition, all eigenvalues of A have magnitudes less than 1, then the unique solution of

Wdo − A′WdoA = C′C (6.61)

is positive definite. The solution is called the discrete observability Gramian and can be expressed as

Wdo =
∞∑

m=0

(A′)mC′CAm (6.62)

This can be proved directly or indirectly using the duality theorem. We mention that all
other properties—such as controllability and observability indices, Kalman decomposition,
and Jordan-form controllability and observability conditions—discussed for the continuous-
time case apply to the discrete-time case without any modification. The controllability index
and observability index, however, have simple interpretations in the discrete-time case. The
controllability index is the shortest input sequence that can transfer any state to any other state.
The observability index is the shortest input and output sequences needed to determine the
initial state uniquely.

6.6.1 Controllability to the Origin and Reachability

In the literature, there are three different controllability definitions:

1. Transfer any state to any other state as adopted in Definition 6.D1.

2. Transfer any state to the zero state, called controllability to the origin.

172 CONTROLLABILITY AND OBSERVABILITY

3. Transfer the zero state to any state, called controllability from the origin or, more often,
reachability.

In the continuous-time case, because eAt is nonsingular, the three definitions are equiva-
lent. In the discrete-time case, if A is nonsingular, the three definitions are again equivalent.
But if A is singular, then (1) and (3) are equivalent, but not (2) and (3). The equivalence of (1)
and (3) can easily be seen from (6.58). We use examples to discuss the difference between (2)
and (3). Consider

x[k + 1] =

 0 1 0

0 0 1
0 0 0


 x[k] +


 0

0
0


 u[k] (6.63)

Its controllability matrix has rank 0 and the equation is not controllable as defined in (1) or not
reachable as defined in (3). The matrix A has the form shown in (3.40) and has the property
Ak = 0 for k ≥ 3. Thus we have

x[3] = A3x[0] = 0

for any initial state x[0]. Thus every state propagates to the zero state whether or not an input
sequence is applied. Thus the equation is controllable to the origin. A different example follows.
Consider

x[k + 1] =
[

2 1
0 0

]
x[k] +

[−1
0

]
u[k] (6.64)

Its controllability matrix [−1 −2
0 0

]

has rank 1 and the equation is not reachable. However, for any x1[0] = α and x2[0] = β,
the input u[0] = 2α + β transfers x[0] to x[1] = 0. Thus the equation is controllable to the
origin. Note that the A-matrices in (6.63) and (6.64) are both singular. The definition adopted
in Definition 6.D1 encompasses the other two definitions and makes the discussion simple.
For a thorough discussion of the three definitions, see Reference [4].

6.7 Controllability After Sampling

Consider a continuous-time state equation

ẋ(t) = Ax(t) + Bu(t) (6.65)

If the input is piecewise constant or

u[k] := u(kT) = u(t) for kT ≤ t < (k + 1)T

then the equation can be described, as developed in (4.17), by

x̄[k + 1] = Āx̄[k] + B̄u[k] (6.66)

6.7 Controllability After Sampling 173

with

Ā = eAT B̄ =
(∫ T

0
eAt dt

)
B =: MB (6.67)

The question is: If (6.65) is controllable, will its sampled equation in (6.66) be controllable? This
problem is important in designing so-called dead-beat sampled-data systems and in computer
control of continuous-time systems. The answer to the question depends on the sampling period
T and the location of the eigenvalues of A. Let λi and λ̄i be, respectively, the eigenvalues of
A and Ā. We use Re and Im to denote the real part and imaginary part. Then we have the
following theorem.

� Theorem 6.9

Suppose (6.65) is controllable. A sufficient condition for its discretized equation in (6.66), with sampling
period T , to be controllable is that |Im[λi − λj]| �= 2πm/T for m = 1, 2, . . . , whenever
Re[λi − λj] = 0. For the single-input case, the condition is necessary as well.

First we remark on the conditions. If A has only real eigenvalues, then the discretized
equation with any sampling period T > 0 is always controllable. Suppose A has complex
conjugate eigenvalues α ± jβ. If the sampling period T does not equal any integer multiple of
π/β, then the discretized state equation is controllable. If T = mπ/β for some integer m, then
the discretized equation may not be controllable. The reason is as follows. Because Ā = eAT , if
λi is an eigenvalue of A, then λ̄i := eλiT is an eigenvalue of Ā (Problem 3.19). If T = mπ/β,
the two distinct eigenvalues λ1 = α + jβ and λ2 = α − jβ of A become a repeated eigenvalue
−eαT or eαT of Ā. This will cause the discretized equation to be uncontrollable, as we will
see in the proof. We show Theorem 6.9 by assuming A to be in Jordan form. This is permitted
because controllability is invariant under any equivalence transformation.

Proof of Theorem 6.9 To simplify the discussion, we assume A to be of the form

A = diag(A11, A12, A21) =




λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0
0 0 0 λ1 0 0
0 0 0 0 λ2 1
0 0 0 0 0 λ2




(6.68)

In other words, A has two distinct eigenvalues λ1 and λ2. There are two Jordan blocks,
one with order 3 and one with order 1, associated with λ1 and only one Jordan block of
order 2 associated with λ2. Using (3.48), we have

Ā = diag(Ā11, Ā12, Ā21)

=




eλ1T T eλ1T T 2eλ1T /2 0 0 0
0 eλ1T T eλ1T 0 0 0
0 0 eλ1T 0 0 0
0 0 0 eλ1T 0 0
0 0 0 0 eλ2T T eλ2T

0 0 0 0 0 eλ2T




(6.69)

174 CONTROLLABILITY AND OBSERVABILITY

This is not in Jordan form. Because we will use Theorem 6.8, which is also applicable to
the discrete-time case without any modification, to prove Theorem 6.9, we must transform
Ā in (6.69) into Jordan form. It turns out that the Jordan form of Ā equals the one in (6.68)
if λi is replaced by λ̄i := eλiT (Problem 3.17). In other words, there exists a nonsingular
upper triangular matrix P such that the transformation x̃ = Px̄ transforms (6.66) into

x̃[k + 1] = PĀP−1x̃[k] + PMBu[k] (6.70)

with PĀP−1 in the Jordan form in (6.68) with λi replaced by λ̄i . Now we are ready to
establish Theorem 6.9.

First we show that M in (6.67) is nonsingular. If A is of the form shown in (6.68),
then M is upper triangular. Its diagonal entry is of form

mii :=
∫ T

0
eλiτ dτ =

{
(eλiT − 1)/λi if λi �= 0
T if λi = 0

(6.71)

Let λi = αi + jβi . The only way for mii = 0 is αi = 0 and βiT = 2πm. In this case,
−jβi is also an eigenvalue and the theorem requires that 2βiT �= 2πm. Thus we conclude
mii �= 0 and M is nonsingular.

If A is of the form shown in (6.68), then it is controllable if and only if the third and
fourth rows of B are linearly independent and the last row of B is nonzero (Theorem 6.8).
Under the condition in Theorem 6.9, the two eigenvalues λ̄1 = eλ1T and λ̄2 = eλ2T of Ā
are distinct. Thus (6.70) is controllable if and only if the third and fourth rows of PMB are
linearly independent and the last row of PMB is nonzero. This is so because those rows
of PMB equal the corresponding rows of B multiplied by nonzero constants. This shows
the sufficiency of the theorem. If the condition in Theorem 6.9 is not met, then λ̄1 = λ̄2.
In this case, (6.70) is controllable if the third, fourth, and last rows of PMB are linearly
independent. This is still possible if B has three or more columns. Thus the condition is
not necessary. In the single-input case, if λ̄1 = λ̄2, then (6.70) has two or more Jordan
blocks associated with the same eigenvalue and (6.70) is, following Corollary 6.8, not
controllable. This establishes the theorem. Q.E.D.

In the proof of Theorem 6.9, we have essentially established the theorem that follows.

� Theorem 6.10

If a continuous-time linear time-invariant state equation is not controllable, then its discretized state
equation, with any sampling period, is not controllable.

This theorem is intuitively obvious. If a state equation is not controllable using any input,
it is certainly not controllable using only piecewise constant input.

Example 6.12 Consider the system shown in Fig. 6.11. Its input is sampled every T seconds
and then kept constant using a hold circuit. The transfer function of the system is given as

ĝ(s) = s + 2

s3 + 3s2 + 7s + 5
= s + 2

(s + 1)(s + 1 + j2)(s + 1 − j2)
(6.72)

6.7 Controllability After Sampling 175

u k[]

Figure 6.11 System with piecewise constant input.

Using (4.41), we can readily obtain the state equation

ẋ =

−3 −7 −5

1 0 0
0 1 0


 x +


 1

0
0


 u

y = [0 1 2]x

(6.73)

to describe the system. It is a controllable-form realization and is clearly controllable. The
eigenvalues of A are −1, −1 ± j2 and are plotted in Fig. 6.11. The three eigenvalues have
the same real part; their differences in imaginary parts are 2 and 4. Thus the discretized state
equation is controllable if and only if

T �= 2πm

2
= πm and T �= 2πm

4
= 0.5πm

for m = 1, 2, The second condition includes the first condition. Thus we conclude that
the discretized equation of (6.73) is controllable if and only if T �= 0.5mπ for any positive
integer m.

We use MATLAB to check the result for m = 1 or T = 0.5π . Typing

a=[-3 -7 -5;1 0 0;0 1 0];b=[1;0;0];

[ad,bd]=c2d(a,b,pi/2)

yields the discretized state equation as

x̄[k + 1] =

−0.1039 0.2079 0.5197

−0.1390 −0.4158 −0.5197
0.1039 0.2079 0.3118


 x̄[k] +


−0.1039

0.1039
0.1376


 u[k] (6.74)

Its controllability matrix can be obtained by typing ctrb(ad,bd), which yields

Cd =

−0.1039 0.1039 −0.0045

0.1039 −0.1039 0.0045
0.1376 0.0539 0.0059




Its first two rows are clearly linearly dependent. Thus Cd does not have full row rank
and (6.74) is not controllable as predicted by Theorem 6.9. We mention that if we type

176 CONTROLLABILITY AND OBSERVABILITY

rank(ctrb(ad,bd)), the result is 3 and (6.74) is controllable. This is incorrect and is due
to roundoff errors. We see once again that the rank is very sensitive to roundoff errors.

What has been discussed is also applicable to the observability part. In other words, under
the conditions in Theorem 6.9, if a continuous-time state equation is observable, its discretized
equation is also observable.

6.8 LTV State Equations

Consider the n-dimensional p-input q-output state equation

ẋ = A(t)x + B(t)u

y = C(t)x
(6.75)

The state equation is said to be controllable at t0, if there exists a finite t1 > t0 such that for any
x(t0) = x0 and any x1, there exists an input that transfers x0 to x1 at time t1. Otherwise the state
equation is uncontrollable at t0. In the time-invariant case, if a state equation is controllable,
then it is controllable at every t0 and for every t1 > t0; thus there is no need to specify t0 and
t1. In the time-varying case, the specification of t0 and t1 is crucial.

� Theorem 6.11

The n-dimensional pair (A(t), B(t)) is controllable at time t0 if and only if there exists a finite t1 > t0
such that the n × n matrix

Wc(t0, t1) =
∫ t1

t0

�(t1, τ)B(τ)B′(τ)�′(t1, τ) dτ (6.76)

where �(t, τ) is the state transition matrix of ẋ = A(t)x, is nonsingular.

Proof: We first show that if Wc(t0, t1) is nonsingular, then (6.75) is controllable. The
response of (6.75) at t1 was computed in (4.57) as

x(t1) = �(t1, t0)x0 +
∫ t1

t0

�(t1, τ)B(τ)u(τ) dτ (6.77)

We claim that the input

u(t) = −B′(t)�′(t1, t)W−1
c (t0, t1)[�(t1, t0)x0 − x1] (6.78)

will transfer x0 at time t0 to x1 at time t1. Indeed, substituting (6.78) into (6.77) yields

x(t1) = �(t1, t0)x0 −
∫ t1

t0

�(t1, τ)B(τ)B′(τ)�′(t1, τ) dτ

· W−1
c (t0, t1)[�(t1, t0)x0 − x1]

= �(t1, t0)x0 − Wc(t0, t1)W−1
c (t0, t1)[�(t1, t0)x0 − x1] = x1

6.8 LTV State Equations 177

Thus the equation is controllable at t0. We show the converse by contradiction. Suppose
(6.75) is controllable at t0 but Wc(t0, t) is singular or, positive semidefinite, for all t1 > t0.
Then there exists an n × 1 nonzero constant vector v such that

v′Wc(t0, t1)v =
∫ t1

t0

v′�(t1, τ)B(τ)B′(τ)�′(t1, τ)v dτ

=
∫ t1

t0

||B′(τ)�′(t1, τ)v||2dτ = 0

which implies

B′(τ)�′(t1, τ)v ≡ 0 or v′�(t1, τ)B(τ) ≡ 0 (6.79)

for all τ in [t0, t1]. If (6.75) is controllable, there exists an input that transfers the initial
state x0 = �(t0, t1)v at t0 to x(t1) = 0. Then (6.77) becomes

0 = �(t1, t0)�(t0, t1)v +
∫ t1

t0

�(t1, τ)B(τ)u(τ) dτ (6.80)

Its premultiplication by v′ yields

0 = v′v + v′
∫ t1

t0

�(t1, τ)B(τ)u(τ) dτ = ||v||2 + 0

This contradicts the hypothesis v �= 0. Thus if (A(t), B(t)) is controllable at t0, Wc(t0, t1)

must be nonsingular for some finite t1 > t0. This establishes Theorem 6.11. Q.E.D.

In order to apply Theorem 6.11, we need knowledge of the state transition matrix, which,
however, may not be available. Therefore it is desirable to develop a controllability condition
without involving �(t, τ). This is possible if we have additional conditions on A(t) and B(t).
Recall that we have assumed A(t) and B(t) to be continuous. Now we require them to be
(n − 1) times continuously differentiable. Define M0(t) = B(t). We then define recursively a
sequence of n × p matrices Mm(t) as

Mm+1(t) := −A(t)Mm(t) + d

dt
Mm(t) (6.81)

for m = 0, 1, . . . , n − 1. Clearly, we have

�(t2, t)B(t) = �(t2, t)M0(t)

for any fixed t2. Using

∂

∂t
�(t2, t) = −�(t2, t)A(t)

(Problem 4.17), we compute

∂

∂t
[�(t2, t)B(t)] = ∂

∂t
[�(t2, t)]B(t) + �(t2, t)

d

dt
B(t)

= �(t2, t)[−A(t)M0(t) + d

dt
M0(t)] = �(t2, t)M1(t)

178 CONTROLLABILITY AND OBSERVABILITY

Proceeding forward, we have

∂m

∂tm
�(t2, t)B(t) = �(t2, t)Mm(t) (6.82)

for m = 0, 1, 2, The following theorem is sufficient but not necessary for (6.75) to be
controllable.

� Theorem 6.12

Let A(t) and B(t) be n−1 times continuously differentiable. Then the n-dimensional pair (A(t), B(t))
is controllable at t0 if there exists a finite t1 > t0 such that

rank [M0(t1) M1(t1) · · · Mn−1(t1)] = n (6.83)

Proof: We show that if (6.83) holds, then Wc(t0, t) is nonsingular for all t ≥ t1. Suppose
not, that is, Wc(t0, t) is singular or positive semidefinite for some t2 ≥ t1. Then there
exists an n × 1 nonzero constant vector v such that

v′Wc(t0, t2)v =
∫ t2

t0

v′�(t2, τ)B(τ)B′(τ)�′(t2, τ)v dτ

=
∫ t2

t0

||B′(τ)�′(t2, τ)v||2 dτ = 0

which implies

B′(τ)�′(t2, τ)v ≡ 0 or v′�(t2, τ)B(τ) ≡ 0 (6.84)

for all τ in [t0, t2]. Its differentiations with respect to τ yield, as derived in (6.82),

v′�(t2, τ)Mm(τ) ≡ 0

for m = 0, 1, 2, . . . , n− 1, and all τ in [t0, t2], in particular, at t1. They can be arranged as

v′�(t2, t1)[M0(t1) M1(t1) · · · Mn−1(t1)] = 0 (6.85)

Because �(t2, t1) is nonsingular, v′�(t2, t1) is nonzero. Thus (6.85) contradicts (6.83).
Therefore, under the condition in (6.83), Wc(t0, t2), for any t2 ≥ t1, is nonsingular and
(A(t), B(t)) is, following Theorem 6.11, controllable at t0. Q.E.D.

Example 6.13 Consider

ẋ =

 t −1 0

0 −t t

0 0 t


 x +


 0

1
1


 u (6.86)

We have M0 = [0 1 1]′ and compute

M1 = −A(t)M0 + d

dt
M0 =


 1

0
−t




M2 = −A(t)M1 + d

dt
M1 =


 −t

t2

t2 − 1




6.8 LTV State Equations 179

The determinant of the matrix

[M0 M1 M2] =

 0 1 −t

1 0 t2

1 −t t2 − 1




is t2 + 1, which is nonzero for all t . Thus the state equation in (6.86) is controllable at every t .

Example 6.14 Consider

ẋ =
[

1 0
0 2

]
x +

[
1
1

]
u (6.87)

and

ẋ =
[

1 0
0 2

]
x +

[
et

e2t

]
u (6.88)

Equation (6.87) is a time-invariant equation and is controllable according to Corollary 6.8.
Equation (6.88) is a time-varying equation; the two entries of its B-matrix are nonzero for all
t and one might be tempted to conclude that (6.88) is controllable. Let us check this by using
Theorem 6.11. Its state transition matrix is

�(t, τ) =
[

et−τ 0
0 e2(t−τ)

]

and

�(t, τ)B(τ) =
[

et−τ 0
0 e2(t−τ)

] [
eτ

e2τ

]
=
[

et

e2t

]

We compute

Wc(t0, t) =
∫ t

t0

[
et

e2t

]
[et e2t]dτ =

[∫ t

t0
e2t dτ

∫ t

t0
e3t dτ∫ t

t0
e3t dτ

∫ t

t0
e4t dτ

]

=
[

e2t (t − t0) e3t (t − t0)

e3t (t − t0) e4t (t − t0)

]

Its determinant is identically zero for all t0 and t . Thus (6.88) is not controllable at any t0. From
this example, we see that, in applying a theorem, every condition should be checked carefully;
otherwise, we might obtain an erroneous conclusion.

We now discuss the observability part. The linear time-varying state equation in (6.75)
is observable at t0 if there exists a finite t1 such that for any state x(t0) = x0, the knowledge
of the input and output over the time interval [t0, t1] suffices to determine uniquely the initial
state x0. Otherwise, the state equation is said to be unobservable at t0.

� Theorem 6.O11

The pair (A(t), C(t)) is observable at time t0 if and only if there exists a finite t1 > t0 such that the
n × n matrix

180 CONTROLLABILITY AND OBSERVABILITY

Wo(t0, t1) =
∫ t1

t0

�′(τ, t0)C′(τ)C(τ)�(τ, t0) dτ (6.89)

where �(t, τ) is the state transition matrix of ẋ = A(t)x, is nonsingular.

� Theorem 6.O12

Let A(t) and C(t) be n−1 times continuously differentiable. Then the n-dimensional pair (A(t), C(t))
is observable at t0 if there exists a finite t1 > t0 such that

rank




N0(t1)

N1(t1)
...

Nn−1(t1)


 = n (6.90)

where

Nm+1(t) = Nm(t)A(t) + d

dt
Nm(t) m = 0, 1, . . . , n − 1

with

N0 = C(t)

We mention that the duality theorem in Theorem 6.5 for time-invariant systems is not
applicable to time-varying systems. It must be modified. See Problems 6.22 and 6.23.

PROBLEMS
6.1 Is the state equation

ẋ =

 0 1 0

0 0 1
−1 −3 −3


 x +


 1

0
0


 u

y = [1 2 1]x

controllable? Observable?

6.2 Is the state equation

ẋ =

 0 1 0

0 0 1
0 2 −1


 x +


 0 1

1 0
0 0


u

y = [1 0 1]x

controllable? Observable?

6.3 Is it true that the rank of [B AB · · · An−1B] equals the rank of [AB A2B · · · AnB]?
If not, under what condition will it be true?

6.4 Show that if the state equation

Problems 181

ẋ =
[

A11 A12

A21 A22

]
x +

[
B1

0

]
u

is controllable then the pair (A22, A21) is controllable.

6.5 Find a state equation to describe the network shown in Fig. 6.1, and then check its
controllability and observability.

6.6 Find the controllability index and observability index of the state equations in Problems
6.1 and 6.2.

6.7 What is the controllability index of the state equation

ẋ = Ax + Iu

where I is the unit matrix?

6.8 Reduce the state equation

ẋ =
[−1 4

4 −1

]
x +

[
1
1

]
u y = [1 1]x

to a controllable one. Is the reduced equation observable?

6.9 Reduce the state equation in Problem 6.5 to a controllable and observable equation.

6.10 Reduce the state equation

ẋ =




λ1 1 0 0 0
0 λ1 1 0 0
0 0 λ1 0 0
0 0 0 λ2 1
0 0 0 0 λ2


 x +




0
1
0
0
1


 u

y = [0 1 1 0 1]x

to a controllable and observable equation.

6.11 Consider the n-dimensional state equation

ẋ = Ax + Bu

y = Cx + Du

The rank of its controllability matrix is assumed to be n1 < n. Let Q1 be an n×n1 matrix
whose columns are any n1 linearly independent columns of the controllability matrix.
Let P1 be an n1 × n matrix such that P1Q1 = In1 , where In1 is the unit matrix of order
n1. Show that the following n1-dimensional state equation

˙̄x1 = P1AQ1x̄1 + P1Bu

ȳ = CQ1x̄1 + Du

is controllable and has the same transfer matrix as the original state equation.

6.12 In Problem 6.11, the reduction procedure reduces to solving for P1 in P1Q1 = I. How
do you solve P1?

182 CONTROLLABILITY AND OBSERVABILITY

6.13 Develop a similar statement as in Problem 6.11 for an unobservable state equation.

6.14 Is the Jordan-form state equation controllable and observable?

ẋ =




2 1 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




x +




2 1 0
2 1 1
1 1 1
3 2 1

−1 0 1
1 0 1
1 0 0




u

y =

 2 2 1 3 −1 1 1

1 1 1 2 0 0 0
0 1 1 1 1 1 0


 x

6.15 Is it possible to find a set of bij and a set of cij such that the state equation

ẋ =




1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1


 x +




b11 b12

b21 b22

b31 b32

b41 b42

b51 b52


u

y =

 c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35




is controllable? Observable?

6.16 Consider the state equation

ẋ =




λ1 0 0 0 0
0 α1 β1 0 0
0 −β1 α1 0 0
0 0 0 α2 β2

0 0 0 −β2 α2


 x +




b1

b11

b12

b21

b22


u

y = [c1 c11 c12 c21 c22]

It is the modal form discussed in (4.28). It has one real eigenvalue and two pairs of
complex conjugate eigenvalues. It is assumed that they are distinct. Show that the state
equation is controllable if and only if b1 �= 0; bi1 �= 0 or bi2 �= 0 for i = 1, 2. It is
observable if and only if c1 �= 0; ci1 �= 0 or ci2 �= 0 for i = 1, 2.

6.17 Find two- and three-dimensional state equations to describe the network shown in Fig.
6.12. Discuss their controllability and observability.

6.18 Check controllability and observability of the state equation obtained in Problem 2.19.
Can you give a physical interpretation directly from the network?

Problems 183

Figure 6.12

+

+

+
+

+

u

2

R

−

−

−

−
−

2 F

1 F

3 F
x3 yx2

x2

6.19 Consider the continuous-time state equation in Problem 4.2 and its discretized equa-
tions in Problem 4.3 with sampling period T = 1 and π . Discuss controllability and
observability of the discretized equations.

6.20 Check controllability and observability of

ẋ =
[

0 1
0 t

]
x +

[
0
1

]
u y = [0 1]x

6.21 Check controllability and observability of

ẋ =
[

0 0
0 −1

]
x +

[
1

e−t

]
u y = [0 e−t]x

6.22 Show that (A(t), B(t)) is controllable at t0 if and only if (−A′(t), B′(t)) is observable at
t0.

6.23 For time-invariant systems, show that (A, B) is controllable if and only if (−A, B) is
controllable. Is this true for time-varying systems?

Chapter

7
Minimal Realizations

and Coprime Fractions

7.1 Introduction

This chapter studies further the realization problem discussed in Section 4.4. Recall that a
transfer matrix Ĝ(s) is said to be realizable if there exists a state-space equation

ẋ = Ax + Bu

y = Cx + Du

that has Ĝ(s) as its transfer matrix. This is an important problem for the following reasons. First,
many design methods and computational algorithms are developed for state equations. In order
to apply these methods and algorithms, transfer matrices must be realized into state equations.
As an example, computing the response of a transfer function in MATLAB is achieved by first
transforming the transfer function into a state equation. Second, once a transfer function is
realized into a state equation, the transfer function can be implemented using op-amp circuits,
as discussed in Section 2.3.1.

If a transfer function is realizable, then it has infinitely many realizations, not necessarily
of the same dimension, as shown in Examples 4.6 and 4.7. An important question is then raised:
What is the smallest possible dimension? Realizations with the smallest possible dimension
are called minimal-dimensional or minimal realizations. If we use a minimal realization to
implement a transfer function, then the number of integrators used in an op-amp circuit will
be minimum. Thus minimal realizations are of practical importance.

In this chapter, we show how to obtain minimal realizations. We will show that a realization
of ĝ(s) = N(s)/D(s) is minimal if and only if it is controllable and observable, or if and only

184

7.2 Implications of Coprimeness 185

if its dimension equals the degree of ĝ(s). The degree of ĝ(s) is defined as the degree of D(s) if
the two polynomials D(s) and N(s) are coprime or have no common factors. Thus the concept
of coprimeness is essential here. In fact, coprimeness in the fraction N(s)/D(s) plays the same
role of controllability and observability in state-space equations.

This chapter studies only linear time-invariant systems. We study first SISO systems and
then MIMO systems.

7.2 Implications of Coprimeness

Consider a system with proper transfer function ĝ(s). We decompose it as

ĝ(s) = ĝ(∞) + ĝsp(s)

where ĝsp(s) is strictly proper and ĝ(∞) is a constant. The constant ĝ(∞) yields the D-matrix
in every realization and will not play any role in what will be discussed. Therefore we consider
in this section only strictly proper rational functions. Consider

ĝ(s) = N(s)

D(s)
= β1s

3 + β2s
2 + β3s + β4

s4 + α1s3 + α2s2 + α3s + α4
(7.1)

To simplify the discussion, we have assumed that the denominator D(s) has degree 4 and is
monic (has 1 as its leading coefficient). In Section 4.4, we introduced for (7.1) the realization
in (4.41) without any discussion of its state variables. Now we will redevelop (4.41) by first
defining a set of state variables and then discussing the implications of the coprimeness of
D(s) and N(s).

Consider

ŷ(s) = N(s)D−1(s)û(s) (7.2)

Let us introduce a new variable v(t) defined by v̂(s) = D−1(s)û(s). Then we have

D(s)v̂(s) = û(s) (7.3)

ŷ(s) = N(s)v̂(s) (7.4)

Define state variables as

x(t) :=




x1(t)

x2(t)

x3(t)

x4(t)


 :=




v(3)(t)

v̈(t)

v̇(t)

v(t)


 or x̂(s) =




x̂1(s)

x̂2(s)

x̂3(s)

x̂4(s)


 =




s3

s2

s

1


 v̂(s) (7.5)

Then we have

ẋ2 = x1, ẋ3 = x2, and ẋ4 = x3 (7.6)

They are independent of (7.1) and follow directly from the definition in (7.5). In order to
develop an equation for ẋ1, we substitute (7.5) into (7.3) or

186 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

(s4 + α1s
3 + α2s

2 + α3s + α4)v̂(s) = û(s)

to yield

sx̂1(s) = −α1x̂1(s) − α2x̂2(s) − α3x̂3(s) − α4x̂4(s) + û(s)

which becomes, in the time domain,

ẋ1(t) = [−α1 − α2 − α3 − α4]x(t) + 1 · u(t) (7.7)

Substituting (7.5) into (7.4) yields

ŷ(s) = (β1s
3 + β2s

2 + β3s + β4)v̂(s)

= β1x̂1(s) + β2x̂2(s) + β3x̂3(s) + β4x̂4(s)

= [β1 β2 β3 β4]x̂(s)

which becomes, in the time domain,

y(t) = [β1 β2 β3 β4]x(t) (7.8)

Equations (7.6), (7.7), and (7.8) can be combined as

ẋ = Ax + bu =




−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0


 x +




1

0

0

0


 u

y = cx = [β1 β2 β3 β4]x

(7.9)

This is a realization of (7.1) and was developed in (4.41) by direct verification.
Before proceeding, we mention that if N(s) in (7.1) is 1, then y(t) = v(t) and the output

y(t) and its derivatives can be chosen as state variables. However, if N(s) is a polynomial of
degree 1 or higher and if we choose the output and its derivatives as state variables, then its
realization will be of the form

ẋ = Ax + bu + b1u̇ + b2ü + · · ·
y = cx + du

This equation requires differentiations of u and is not used. Therefore, in general, we cannot
select the output y and its derivatives as state variables.1 We must define state variables by
using v(t). Thus v(t) is called a pseudo state.

Now we check the controllability and observability of (7.9). Its controllability matrix can
readily be computed as

C =




1 −α1 α2
1 − α2 −α3

1 + 2α1α2 − α3

0 1 −α1 α2
1 − α2

0 0 1 −α1

0 0 0 1


 (7.10)

1. See also Example 2.16, in particular, (2.47).

7.2 Implications of Coprimeness 187

Its determinant is 1 for any αi . Thus the controllability matrix C has full row rank and the
state equation is always controllable. This is the reason that (7.9) is called a controllable
canonical form.

Next we check its observability. It turns out that it depends on whether or not N(s) and
D(s) are coprime. Two polynomials are said to be coprime if they have no common factor of
degree at least 1. More specifically, a polynomial R(s) is called a common factor or a common
divisor of D(s) and N(s) if they can be expressed as D(s) = D̄(s)R(s) and N(s) = N̄(s)R(s),
where D̄(s) and N̄(s) are polynomials. A polynomial R(s) is called a greatest common divisor
(gcd) of D(s) and N(s) if (1) it is a common divisor of D(s) and N(s) and (2) it can be divided
without remainder by every other common divisor of D(s) and N(s). Note that if R(s) is a
gcd, so is αR(s) for any nonzero constant α. Thus greatest common divisors are not unique.2

In terms of the gcd, the polynomials D(s) and N(s) are coprime if their gcd R(s) is a nonzero
constant, a polynomial of degree 0; they are not coprime if their gcd has degree 1 or higher.

� Theorem 7.1

The controllable canonical form in (7.9) is observable if and only if D(s) and N(s) in (7.1) are coprime.

Proof: We first show that if (7.9) is observable, then D(s) and N(s) are coprime. We
show this by contradiction. If D(s) and N(s) are not coprime, then there exists a λ1 such
that

N(λ1) = β1λ
3
1 + β2λ

2
1 + β3λ1 + β4 = 0 (7.11)

D(λ1) = λ4
1 + α1λ

3
1 + α2λ

2
1 + α3λ1 + α4 = 0 (7.12)

Let us define v := [λ3
1 λ2

1 λ1 1]′; it is a 4 × 1 nonzero vector. Then (7.11) can be written
as N(λ1) = cv = 0, where c is defined in (7.9). Using (7.12) and the shifting property of
the companion form, we can readily verify

Av =




−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0






λ3
1

λ2
1

λ1

1


 =




λ4
1

λ3
1

λ2
1

λ1


 = λ1v (7.13)

Thus we have A2v = A(Av) = λ1Av = λ2
1v and A3v = λ3

1v. We compute, using cv = 0,

Ov =




c
cA
cA2

cA3


 v =




cv
cAv
cA2v
cA3v


 =




cv
λ1cv
λ2

1cv
λ3

1cv


 = 0

which implies that the observability matrix does not have full column rank. This contradicts
the hypothesis that (7.9) is observable. Thus if (7.9) is observable, then D(s) and N(s)

are coprime.
Next we show the converse; that is, if D(s) and N(s) are coprime, then (7.9) is

observable. We show this by contradiction. Suppose (7.9) is not observable, then Theorem
6.O1 implies that there exists an eigenvalue λ1 of A and a nonzero vector v such that

2. If we require R(s) to be monic, then the gcd is unique.

188 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

[
A − λ1I

c

]
v = 0

or

Av = λ1v and cv = 0

Thus v is an eigenvector of A associated with eigenvalue λ1. From (7.13), we see that
v = [λ3

1 λ2
1 λ1 1]′ is an eigenvector. Substituting this v into cv = 0 yields

N(λ1) = β1λ
3
1 + β2λ

2
1 + β3λ1 + β4 = 0

Thus λ1 is a root of N(s). The eigenvalue of A is a root of its characteristic polynomial,
which, because of the companion form of A, equals D(s). Thus we also have D(λ1) = 0,
and D(s) and N(s) have the same factor s −λ1. This contradicts the hypothesis that D(s)

and N(s) are coprime. Thus if D(s) and N(s) are coprime, then (7.9) is observable. This
establishes the theorem. Q.E.D.

If (7.9) is a realization of ĝ(s), then we have, by definition,

ĝ(s) = c(sI − A)−1b

Taking its transpose yields

ĝ′(s) = ĝ(s) = [c(sI − A)−1b]′ = b′(sI − A′)−1c′

Thus the state equation

ẋ = A′x + c′u =




−α1 1 0 0

−α2 0 1 0

−α3 0 0 1

−α4 0 0 0


 x +




β1

β2

β3

β4


 u

y = b′x = [1 0 0 0]x

(7.14)

is a different realization of (7.1). This state equation is always observable and is called an
observable canonical form. Dual to Theorem 7.1, Equation (7.14) is controllable if and only
if D(s) and N(s) are coprime.

We mention that the equivalence transformation x̄ = Px with

P =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 (7.15)

will transform (7.9) into

ẋ =




0 1 0 0

0 0 1 0

0 0 0 1

−α4 −α3 −α2 −α1


 x +




0

0

0

1


 u

y = [β4 β3 β2 β1]x

7.2 Implications of Coprimeness 189

This is also called a controllable canonical form. Similarly, (7.15) will transform (7.14) into

ẋ =




0 0 0 −α4

1 0 0 −α3

0 1 0 −α2

0 0 1 −α1


 x +




β4

β3

β2

β1


 u

y = cx = [0 0 0 1]x

This is a different observable canonical form.

7.2.1 Minimal Realizations

We first define a degree for proper rational functions. We call N(s)/D(s) a polynomial fraction
or, simply, a fraction. Because

ĝ(s) = N(s)

D(s)
= N(s)Q(s)

D(s)Q(s)

for any polynomial Q(s), fractions are not unique. Let R(s) be a greatest common divisor
(gcd) of N(s) and D(s). That is, if we write N(s) = N̄(s)R(s) and D(s) = D̄(s)R(s),
then the polynomials N̄(s) and D̄(s) are coprime. Clearly every rational function ĝ(s) can be
reduced to ĝ(s) = N̄(s)/D̄(s). Such an expression is called a coprime fraction. We call D̄(s)

a characteristic polynomial of ĝ(s). The degree of the characteristic polynomial is defined as
the degree of ĝ(s). Note that characteristic polynomials are not unique; they may differ by a
nonzero constant. If we require the polynomial to be monic, then it is unique.

Consider the rational function

ĝ(s) = s2 − 1

4(s3 − 1)

Its numerator and denominator contain the common factor s − 1. Thus its coprime fraction is
ĝ(s) = (s+1)/4(s2 +s+1) and its characteristic polynomial is 4s2 +4s+4. Thus the rational
function has degree 2. Given a proper rational function, if its numerator and denominator are
coprime—as is often the case—then its denominator is a characteristic polynomial and the
degree of the denominator is the degree of the rational function.

� Theorem 7.2

A state equation (A, b, c, d) is a minimal realization of a proper rational function ĝ(s) if and only if
(A, b) is controllable and (A, c) is observable or if and only if

dim A = deg ĝ(s)

Proof: If (A, b) is not controllable or if (A, c) is not observable, then the state equation
can be reduced to a lesser dimensional state equation that has the same transfer function
(Theorems 6.6 and 6.O6). Thus (A, b, c, d) is not a minimal realization. This shows the
necessity of the theorem.

190 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

To show the sufficiency, consider the n-dimensional controllable and observable state
equation

ẋ = Ax + bu

y = cx + du
(7.16)

Clearly its n × n controllability matrix

C = [b Ab · · · An−1b] (7.17)

and its n × n observability matrix

O =




c
cA
...

cAn−1


 (7.18)

both have rank n. We show that (7.16) is a minimal realization by contradiction. Suppose
the n̄-dimensional state equation, with n̄ < n,

˙̄x = Āx̄ + b̄u

y = c̄x̄ + d̄u
(7.19)

is a realization of ĝ(s). Then Theorem 4.1 implies d = d̄ and

cAmb = c̄Ā
m

b̄ for m = 0, 1, 2, . . . (7.20)

Let us consider the product

OC =




c
cA
...

cAn−1


 [b Ab · · · An−1b]

=




cb cAb cA2b · · · cAn−1b
cAb cA2b cA3b · · · cAnb
cA2b cA3b cA4b · · · cAn+1b

...
...

...
. . .

...

cAn−1b cAnb cAn+1b · · · cA2(n−1)b


 (7.21)

Using (7.20), we can replace every cAmb by c̄Ā
m

b̄. Thus we have

OC = ŌnC̄n (7.22)

where Ōn is defined as in (6.21) for the n̄-dimensional state equation in (7.19) and C̄n is
defined similarly. Because (7.16) is controllable and observable, we have ρ(O) = n and
ρ(C) = n. Thus (3.62) implies ρ(OC) = n. Now Ōn and C̄n are, respectively, n × n̄

and n̄ × n; thus (3.61) implies that the matrix ŌnC̄n has rank at most n̄. This contradicts
ρ(ŌnC̄n) = ρ(OC) = n. Thus (A, b, c, d) is minimal. This establishes the first part of
the theorem.

7.2 Implications of Coprimeness 191

The realization in (7.9) is controllable and observable if and only if ĝ(s) =
N(s)/D(s) is a coprime fraction (Theorem 7.1). In this case, we have dim A = deg
D(s) = deg ĝ(s). Because all minimal realizations are equivalent, as will be established
immediately, we conclude that every realization is minimal if and only if dim A = deg
ĝ(s). This establishes the theorem. Q.E.D.

To complete the proof of Theorem 7.2, we need the following theorem.

� Theorem 7.3

All minimal realizations of ĝ(s) are equivalent.

Proof: Let (A, b, c, d) and (Ā, b̄, c̄, d̄) be minimal realizations of ĝ(s). Then we have
d̄ = d and, following (7.22),

OC = ŌC̄ (7.23)

Multiplying OAC out explicitly and then using (7.20), we can show

OAC = ŌĀC̄ (7.24)

Note that the controllability and observability matrices are all nonsingular square matrices.
Let us define

P := Ō−1O

Then (7.23) implies

P = Ō−1O = C̄C−1 and P−1 = O−1Ō = CC̄−1 (7.25)

From (7.23), we have C̄ = Ō−1OC = PC . The first columns on both side of the equality
yield b̄ = Pb. Again from (7.23), we have Ō = OCC̄−1 = OP−1. The first rows on both
sides of the equality yield c̄ = cP−1. Equation (7.24) implies

Ā = Ō−1OACC̄−1 = PAP−1

Thus (A, b, c d) and (Ā, b̄, c̄, d̄) meet the conditions in (4.26) and, consequently, are
equivalent. This establishes the theorem. Q.E.D.

Theorem 7.2 has many important implications. Given a state equation, if we compute its
transfer function and degree, then the minimality of the state equation can readily be determined
without checking its controllability and observability. Thus the theorem provides an alternative
way of checking controllability and observability. Conversely, given a rational function, if we
compute first its common factors and reduce it to a coprime fraction, then the state equations
obtained by using its coefficients as shown in (7.9) and (7.14) will automatically be controllable
and observable.

Consider a proper rational function ĝ(s) = N(s)/D(s). If the fraction is coprime, then
every root of D(s) is a pole of ĝ(s) and vice versa. This is not true if N(s) and D(s) are not
coprime. Let (A, b.c.d) be a minimal realization of ĝ(s) = N(s)/D(s). Then we have

192 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

N(s)

D(s)
= c(sI − A)−1b + d = 1

det(sI − A)
c
[
Adj(sI − A)

]
b + d

If N(s) and D(s) are coprime, then deg D(s) = deg ĝ(s) = dim A. Thus we have

D(s) = k det(sI − A)

for some nonzero constant k. Note that k = 1 if D(s) is monic. This shows that if a state
equation is controllable and observable, then every eigenvalue of A is a pole of ĝ(s) and every
pole of ĝ(s) is an eigenvalue of A. Thus we conclude that if (A, b, c, d) is controllable and
observable, then we have

Asymptotic stability ⇐⇒ BIBO stability

More generally, controllable and observable state equations and coprime fractions contain
essentially the same information and either description can be used to carry out analysis and
design.

7.3 Computing Coprime Fractions

The importance of coprime fractions and degrees was demonstrated in the preceding section.
In this section, we discuss how to compute them. Consider a proper rational function

ĝ(s) = N(s)

D(s)

where N(s) and D(s) are polynomials. If we use the MATLAB function roots to compute
their roots and then to cancel their common factors, we will obtain a coprime fraction. The
MATLAB function minreal can also be used to obtain coprime fractions. In this section,
we introduce a different method by solving a set of linear algebraic equations. The method
does not offer any advantages over the aforementioned methods for scalar rational functions.
However, it can readily be extended to the matrix case. More importantly, the method will be
used to carry out design in Chapter 9.

Consider N(s)/D(s). To simplify the discussion, we assume deg N(s) ≤ deg D(s) =
n = 4. Let us write

N(s)

D(s)
= N̄(s)

D̄(s)

which implies

D(s)(−N̄(s)) + N(s)D̄(s) = 0 (7.26)

It is clear that D(s) and N(s) are not coprime if and only if there exist polynomials N̄(s)

and D̄(s) with deg N̄(s) ≤ deg D̄(s) < n = 4 to meet (7.26). The condition deg D̄(s) < n

is crucial; otherwise, (7.26) has infinitely many solutions N̄(s) = N(s)R(s) and D̄(s) =
D(s)R(s) for any polynomial R(s). Thus the coprimeness problem can be reduced to solving
the polynomial equation in (7.26).

Instead of solving (7.26) directly, we will change it into solving a set of linear algebraic
equations. We write

7.3 Computing Coprime Fractions 193

D(s) = D0 + D1s + D2s
2 + D3s

3 + D4s
4

N(s) = N0 + N1s + N2s
2 + N3s

3 + N4s
4

D̄(s) = D̄0 + D̄1s + D̄2s
2 + D̄3s

3

N̄(s) = N̄0 + N̄1s + N̄2s
2 + N̄3s

3 (7.27)

where D4 �= 0 and the remaining Di, Ni, D̄i , and N̄i can be zero or nonzero. Substituting
these into (7.26) and equating to zero the coefficients associated with sk , for k = 0, 1, . . . , 7,
we obtain

S :=




D0 N0
... 0 0

... 0 0
... 0 0

D1 N1
... D0 N0

... 0 0
... 0 0

D2 N2
... D1 N1

... D0 N0
... 0 0

D3 N3
... D2 N2

... D1 N1
... D0 N0

D4 N4
... D3 N3

... D2 N2
... D1 N1

0 0
... D4 N4

... D3 N3
... D2 N2

0 0
... 0 0

... D4 N4
... D3 N3

0 0
... 0 0

... 0 0
... D4 N4







−N̄0

D̄0

· · ·
−N̄1

D̄1

· · ·
−N̄2

D̄2

· · ·
−N̄3

D̄3




= 0 (7.28)

This is a homogeneous linear algebraic equation. The first block column of S consists of two
columns formed from the coefficients of D(s) and N(s) arranged in ascending powers of s.
The second block column is the first block column shifted down one position. Repeating the
process until S is a square matrix of order 2n = 8. The square matrix S is called the Sylvester
resultant. If the Sylvester resultant is singular, nonzero solutions exist in (7.28) (Theorem 3.3).
This means that polynomials N̄(s) and D̄(s) of degree 3 or less exist to meet (7.26). Thus
D(s) and N(s) are not coprime. If the Sylvester resultant is nonsingular, no nonzero solutions
exist in (7.28) or, equivalently, no polynomials N̄(s) and D̄(s) of degree 3 or less exist to meet
(7.26). Thus D(s) and N(s) are coprime. In conclusion, D(s) and N(s) are coprime if and
only if the Sylvester resultant is nonsingular.

If the Sylvester resultant is singular, then N(s)/D(s) can be reduced to

N(s)

D(s)
= N̄(s)

D̄(s)

where N̄(s) and D̄(s) are coprime. We discuss how to obtain a coprime fraction directly from
(7.28). Let us search linearly independent columns of S in order from left to right. We call
columns formed from Di D-columns and formed from Ni N-columns. Then every D-column
is linearly independent of its left-hand-side (LHS) columns. Indeed, because D4 �= 0, the first
D-column is linearly independent. The second D-column is also linearly independent of its
LHS columns because the LHS entries of D4 are all zero. Proceeding forward, we conclude
that all D-columns are linearly independent of their LHS columns. On the other hand, an N-
column can be dependent or independent of its LHS columns. Because of the repetitive pattern

194 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

of S, if an N-column becomes linearly dependent on its LHS columns, then all subsequent
N-columns are linearly dependent on their LHS columns. Let µ denote the number of linearly
independent N-columns in S. Then the (µ + 1)th N-column is the first N-column to become
linearly dependent on its LHS columns and will be called the primary dependent N-column.
Let us use S1 to denote the submatrix of S that consists of the primary dependent N-column
and all its LHS columns. That is, S1 consists of µ + 1 D-columns (all of them are linearly
independent) and µ+ 1 N-columns (the last one is dependent). Thus S1 has 2(µ+ 1) columns
but rank 2µ + 1. In other words, S1 has nullity 1 and, consequently, has one independent null
vector. Note that if n̄ is a null vector, so is αn̄ for any nonzero α. Although any null vector can
be used, we will use exclusively the null vector with 1 as its last entry to develop N̄(s) and
D̄(s). For convenience, we call such a null vector a monic null vector. If we use the MATLAB
function null to generate a null vector, then the null vector must be divided by its last entry
to yield a monic null vector. This is illustrated in the next example.

Example 7.1 Consider

N(s)

D(s)
= 6s3 + s2 + 3s − 20

2s4 + 7s3 + 15s2 + 16s + 10
(7.29)

We have n = 4 and its Sylvester resultant S is 8 × 8. The fraction is coprime if and only if S
is nonsingular or has rank 8. We use MATLAB to check the rank of S. Because it is simpler to
key in the transpose of S, we type

d=[10 16 15 7 2];n=[-20 3 1 6 0];

s=[d 0 0 0;n 0 0 0;0 d 0 0;0 n 0 0;...

0 0 d 0;0 0 n 0;0 0 0 d;0 0 0 n]’;

m=rank(s)

The answer is 6; thus D(s) and N(s) are not coprime. Because all four D-columns of S are
linearly independent, we conclude that S has only two linearly independent N-columns and
µ = 2. The third N-column is the primary dependent N-column and all its LHS columns are
linearly independent. Let S1 denote the first six columns of S, an 8 × 6 matrix. The submatrix
S1 has three D-column (all linearly independent) and two linearly independent N-columns,
thus it has rank 5 and nullity 1. Because all entries of the last row of S1 are zero, they can be
skipped in forming S1. We type

s1=[d 0 0;n 0 0;0 d 0;0 n 0;0 0 d;0 0 n]’;

z=null(s1)

which yields

ans z= [0.6860 0.3430 -0.5145 0.3430 0.0000 0.1715]’

This null vector does not have 1 as its last entry. We divide it by the last entry or the sixth entry
of z by typing

zb=z/z(6)

7.3 Computing Coprime Fractions 195

which yields

ans zb= [4 2 -3 2 0 1]’

This monic null vector equals [−N̄0 D̄0 − N̄1 D̄1 − N̄2 D̄2]′. Thus we have

N̄(s) = −4 + 3s + 0 · s2 D̄(s) = 2 + 2s + s2

and

6s3 + s2 + 3s − 20

2s4 + 7s3 + 15s2 + 16s + 10
= 3s − 4

s2 + 2s + 2

Because the null vector is computed from the first linearly dependent N-column, the computed
N̄(s) and D̄(s) have the smallest possible degrees to meet (7.26) and, therefore, are coprime.
This completes the reduction of N(s)/D(s) to a coprime fraction.

The preceding procedure can be summarized as a theorem.

� Theorem 7.4

Consider ĝ(s) = N(s)/D(s). We use the coefficients of D(s) and N(s) to form the Sylvester resultant
S in (7.28) and search its linearly independent columns in order from left to right. Then we have

deg ĝ(s) = number of linearly independent N-columns =: µ

and the coefficients of a coprime fraction ĝ(s) = N̄(s)/D̄(s) or

[−N̄0 D̄0 − N̄1 D̄1 · · · − N̄µ D̄µ]′

equals the monic null vector of the submatrix that consists of the primary dependent N-column and all
its LHS linearly independent columns of S.

We mention that if D- and N-columns in S are arranged in descending powers of s, then
it is not true that all D-columns are linearly independent of their LHS columns and that the
degree of ĝ(s) equals the number of linearly independent N-columns. See Problem 7.6. Thus
it is essential to arrange the D- and N-columns in ascending powers of s in S.

7.3.1 QR Decomposition

As discussed in the preceding section, a coprime fraction can be obtained by searching linearly
independent columns of the Sylvester resultant in order from left to right. It turns out the widely
available QR decomposition can be used to achieve this searching.

Consider an n × m matrix M. Then there exists an n × n orthogonal matrix Q̄ such that

Q̄M = R

where R is an upper triangular matrix of the same dimensions as M. Because Q̄ operates on the
rows of M, the linear independence of the columns of M is preserved in the columns of R. In
other words, if a column of R is linearly dependent on its left-hand-side (LHS) columns, so is

196 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

the corresponding column of M. Now because R is in upper triangular form, its mth column is
linearly independent of its LHS columns if and only if its mth entry at the diagonal position is
nonzero. Thus using R, the linearly independent columns of M, in order from left to right, can
be obtained by inspection. Because Q̄ is orthogonal, we have Q̄−1 = Q̄′ =: Q and Q̄M = R
becomes M = QR. This is called QR decomposition. In MATLAB, Q and R can be obtained
by typing [q,r]=qr(m).

Let us apply QR decomposition to the resultant in Example 7.1. We type

d=[10 16 15 7 2];n=[-20 3 1 6 0];

s=[d 0 0 0;n 0 0 0;0 d 0 0;0 n 0 0;...

0 0 d 0;0 0 n 0;0 0 0 d;0 0 0 n]’;

[q,r]=qr(s)

Because Q is not needed, we show only R:

r =




−25.1 3.7 −20.6 10.1 −11.6 11.0 −4.1 5.3

0 −20.7 −10.3 4.3 −7.2 2.1 −3.6 6.7

0 0 −10.2 −15.6 −20.3 0.8 −16.8 9.6

0 0 0 8.9 −3.5 −17.9 −11.2 7.3

0 0 0 0 −5.0 0 −12.0 −15.0

0 0 0 0 0 0 −2.0 0

0 0 0 0 0 0 −4.6 0

0 0 0 0 0 0 0 0




We see that the matrix is upper triangular. Because the sixth column has 0 as its sixth entry
(diagonal position), it is linearly dependent on its LHS columns. So is the last column. To
determine whether a column is linearly dependent, we need to know only whether the diagonal
entry is zero or not. Thus the matrix can be simplified as

r =




d x x x x x x x

0 n x x x x x x

0 0 d x x x x x

0 0 0 n x x x x

0 0 0 0 d 0 x x

0 0 0 0 0 0 x 0

0 0 0 0 0 0 d 0

0 0 0 0 0 0 0 0




where d, n, and x denote nonzero entries and d also denotes D-column and n denotes N-
column. We see that every D-column is linearly independent of its LHS columns and there are
only two linearly independent N-columns. Thus by employing QR decomposition, we obtain
immediately µ and the primary dependent N-column. In scalar transfer functions, we can use
either rank or qr to find µ. In the matrix case, using rank is very inconvenient; we will use
QR decomposition.

7.4 Balanced Realization 197

7.4 Balanced Realization3

Every transfer function has infinitely many minimal realizations. Among these realizations, it
is of interest to see which realizations are more suitable for practical implementation. If we
use the controllable or observable canonical form, then the A-matrix and b- or c-vector have
many zero entries, and its implementation will use a small number of components. However,
either canonical form is very sensitive to parameter variations; therefore both forms should
be avoided if sensitivity is an important issue. If all eigenvalues of A are distinct, we can
transform A, using an equivalence transformation, into a diagonal form (if all eigenvalues are
real) or into the modal form discussed in Section 4.3.1 (if some eigenvalues are complex). The
diagonal or modal form has many zero entries in A and will use a small number of components
in its implementation. More importantly, the diagonal and modal forms are least sensitive
to parameter variations among all realizations; thus they are good candidates for practical
implementation.

We discuss next a different minimal realization, called a balanced realization. However,
the discussion is applicable only to stable A. Consider

ẋ = Ax + bu

y = cx
(7.30)

It is assumed that A is stable or all its eigenvalues have negative real parts. Then the
controllability Gramian Wc and the observability Gramian Wo are, respectively, the unique
solutions of

AWc + WcA′ = −bb′ (7.31)

and

A′Wo + WoA = −c′c (7.32)

They are positive definite if (7.30) is controllable and observable.
Different minimal realizations of the same transfer function have different controllability

and observability Gramians. For example, the state equation, taken from Reference [23],

ẋ =
[−1 −4/α

4α −2

]
x +

[
1

2α

]
u

y = [−1 2/α]x (7.33)

for any nonzero α, has transfer function ĝ(s) = (3s + 18)/(s2 + 3s + 18), and is controllable
and observable. Its controllability and observability Gramians can be computed as

Wc =
[

0.5 0

0 α2

]
and Wo =

[
0.5 0

0 1/α2

]
(7.34)

We see that different α yields different minimal realization and different controllability and
observability Gramians. Even though the controllability and observability Gramians will
change, their product remains the same as diag (0.25, 1) for all α.

3. This section may be skipped without loss of continuity.

198 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

� Theorem 7.5

Let (A, b, c) and (Ā, b̄, c̄) be minimal and equivalent and let WcWo and W̄cW̄o be the products of their
controllability and observability Gramians. Then WcWo and W̄cW̄o are similar and their eigenvalues
are all real and positive.

Proof: Let x̄ = Px, where P is a nonsingular constant matrix. Then we have

Ā = PAP−1 b̄ = Pb c̄ = cP−1 (7.35)

The controllability Gramian W̄c and observability Gramian W̄o of (Ā, b̄, c̄) are, respec-
tively, the unique solutions of

ĀW̄c + W̄cĀ
′ = −b̄b̄′ (7.36)

and

Ā
′
W̄o + W̄oĀ = −c̄′c̄ (7.37)

Substituting Ā = PAP−1 and b̄ = Pb into (7.36) yields

PAP−1W̄c + W̄c(P′)−1A′P′ = −Pbb′P′

which implies

AP−1W̄c(P′)−1 + P−1W̄c(P′)−1A′ = −bb′

Comparing this with (7.31) yields

Wc = P−1W̄c(P′)−1 or W̄c = PWcP′ (7.38)

Similarly, we can show

Wo = P′W̄oP or W̄o = (P′)−1WoP−1 (7.39)

Thus we have

WcWo = P−1W̄c(P′)−1P′W̄oP = P−1W̄cW̄oP

This shows that all WcWo are similar and, consequently, have the same set of eigenvalues.
Next we show that all eigenvalues of WcWo are real and positive. Note that both

Wc and Wo are symmetric, but their product may not be. Therefore Theorem 3.6 is not
directly applicable to WcWo. Now we apply Theorem 3.6 to Wc:

Wc = Q′DQ = Q′D1/2D1/2Q =: R′R (7.40)

where D is a diagonal matrix with the eigenvalues of Wc on the diagonal. Because Wc

is symmetric and positive definite, all its eigenvalues are real and positive. Thus we can
express D as D1/2D1/2, where D1/2 is diagonal with positive square roots of the diagonal
entries of D as its diagonal entries. Note that Q is orthogonal or Q−1 = Q′. The matrix
R = D1/2Q is not orthogonal but is nonsingular.

Consider RWoR′; it is clearly symmetric and positive definite. Thus its eigenvalues
are all real and positive. Using (7.40) and (3.66), we have

7.4 Balanced Realization 199

det(σ 2I − WcWo) = det(σ 2I − R′RWo) = det(σ 2I − RWoR′) (7.41)

which implies that WcWo and RWoR′ have the same set of eigenvalues. Thus we conclude
that all eigenvalues of WcWo are real and positive. Q.E.D.

Let us define

� = diag(σ1, σ2, . . . , σn) (7.42)

where σi are positive square roots of the eigenvalues of WcWo. For convenience, we arrange
them in descending order in magnitude or

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

These eigenvalues are called the Hankel singular values. The product WcWo of any minimal
realization is similar to �2.

� Theorem 7.6

For any n-dimensional minimal state equation (A, b, c), there exists an equivalence transformation
x̄ = Px such that the controllability Gramian W̄c and observability Gramian W̄o of its equivalent state
equation have the property

W̄c = W̄o = � (7.43)

This is called a balanced realization.

Proof: We first compute Wc = R′R as in (7.40). We then apply Theorem 3.6 to the real
and symmetric matrix RWoR′ to yield

RWoR′ = U�2U′

where U is orthogonal or U′U = I. Let

P−1 = R′U�−1/2 or P = �1/2U′(R′)−1

Then (7.38) and Wc = R′R imply

W̄c = �1/2U′(R′)−1WcR−1U�1/2 = �

and (7.39) and RWoR′ = U�2U′ imply

W̄o = �−1/2U′RWoR′U�−1/2 = �

This establishes the theorem. Q.E.D.

By selecting a different P, it is possible to find an equivalent state equation with W̄c = I
and W̄o = �2. Such a state equation is called the input-normal realization. Similarly, we
can have a state equation with W̄c = �2 and W̄o = I, which is called the output-normal
realization. The balanced realization in Theorem 7.5 can be used in system reduction. More
specifically, suppose

200 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

[
ẋ1

ẋ2

]
=
[

A11 A12

A21 A22

] [
x1

x2

]
+
[

b1

b2

]
u

y = [c1 c2]x

(7.44)

is a balanced minimal realization of a stable ĝ(s) with

Wc = Wo = diag(�1, �2)

where the A-, b-, and c-matrices are partitioned according to the order of �i . If the Hankel
singular values of �1 and �2 are disjoint, then the reduced state equation

ẋ1 = A11x1 + b1u

y = c1x1

(7.45)

is balanced and A11 is stable. If the singular values of �2 are much smaller than those of �1,
then the transfer function of (7.45) will be close to ĝ(s). See Reference [23].

The MATLAB function balrealwill transform (A, b, c) into a balanced state equation.
The reduced equation in (7.45) can be obtained by usingbalred. The results in this section are
based on the controllability and observability Gramians. Because the Gramians in the MIMO
case are square as in the SISO case; all results in this section apply to the MIMO case without
any modification.

7.5 Realizations from Markov Parameters4

Consider the strictly proper rational function

ĝ(s) = β1s
n−1 + β2s

n−2 + · · · + βn−1s + βn

sn + α1sn−1 + α2ss−2 + · · · + αn−1s + αn

(7.46)

We expand it into an infinite power series as

ĝ(s) = h(0) + h(1)s−1 + h(2)s−2 + · · · (7.47)

If ĝ(s) is strictly proper as assumed in (7.46), then h(0) = 0. The coefficients h(m), m =
1, 2, . . ., are called Markov parameters. Let g(t) be the inverse Laplace transform of ĝ(s) or,
equivalently, the impulse response of the system. Then we have

h(m) = dm−1

dtm−1
g(t)

∣∣∣∣
t=0

for m = 1, 2, 3, This method of computing Markov parameters is impractical because
it requires repetitive differentiations, and differentiations are susceptible to noise.5 Equating
(7.46) and (7.47) yields

4. This section may be skipped without loss of continuity.

5. In the discrete-time case, if we apply an impulse sequence to a system, then the output sequence directly yields
Markov parameters. Thus Markov parameters can easily be generated in discrete-time systems.

7.5 Realizations from Markov Parameters 201

β1s
n−1 + β2s

n−2 + · · · + βn

= (sn + α1s
n−1 + α2s

n−2 + · · · + αn)(h(1)s−1 + h(2)s−2 + · · ·)

From this equation, we can obtain the Markov parameters recursively as

h(1) = β1

h(2) = − α1h(1) + β2

h(3) = − α1h(2) − α2h(1) + β3

...

h(n) = − α1h(n − 1) − α2h(n − 2) − · · · − αn−1h(1) + βn (7.48)

h(m) = − α1h(m − 1) − α2h(m − 2) − · · · − αn−1h(m − n + 1)

− αnh(m − n) (7.49)

for m = n + 1, n + 2,

Next we use the Markov parameters to form the α × β matrix

T(α, β) =




h(1) h(2) h(3) · · · h(β)

h(2) h(3) h(4) · · · h(β + 1)

h(3) h(4) h(5) · · · h(β + 2)

...
...

...
. . .

...

h(α) h(α + 1) h(α + 2) · · · h(α + β − 1)


 (7.50)

It is called a Hankel matrix. It is important to mention that even if h(0) �= 0, h(0) does not
appear in the Hankel matrix.

� Theorem 7.7

A strictly proper rational function ĝ(s) has degree n if and only if

ρT(n, n) = ρT(n + k, n + l) = n for every k, l = 1, 2, . . . (7.51)

where ρ denotes the rank.

Proof: We first show that if deg ĝ(s) = n, thenρT(n, n) = ρT(n + 1, n) = ρT(∞, n).
If deg ĝ(s) = n, then (7.49) holds, and n is the smallest integer having the property.
Because of (7.49), the (n+ 1)th row of T(n+ 1, n) can be written as a linear combination
of the first n rows. Thus we have ρT(n, n) = ρT(n + 1, n). Again, because of (7.49), the
(n + 2)th row of T(n + 2, n) depends on its previous n rows and, consequently, on the
first n rows. Proceeding forward, we can establish ρT(n, n) = ρT(∞, n). Now we claim
ρT(∞, n) = n. If not, there would be an integer n̄ < n having the property (7.49). This
contradicts the hypothesis that deg ĝ(s) = n. Thus we have ρT(n, n) = ρT(∞, n) = n.
Applying (7.49) to the columns of T yields (7.51).

Now we show that if (7.51) holds, then ĝ(s) = h(1)s−1 + h(2)s−2 + · · · can
be expressed as a strictly proper rational function of degree n. From the condition

202 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

ρT(n + 1, ∞) = ρT(n, ∞) = n, we can compute {αi, i = 1, 2, . . . , n} to meet (7.49).
We then use (7.48) to compute {βi, i = 1, 2, . . . , n}. Hence we have

ĝ(s) = h(1)s−1 + h(2)s−2 + h(3)s−3 · · ·

= β1s
n−1 + β2s

n−2 + · · · + βn−1s + βn

sn + α1sn−1 + α2ss−2 + · · · + αn−1s + αn

Because the n is the smallest integer having the property in (7.51), we have deg ĝ(s) = n.
This completes the proof of the theorem. Q.E.D.

With this preliminary, we are ready to discuss the realization problem. Consider a strictly
proper transfer function ĝ(s) expressed as

ĝ(s) = h(1)s−1 + h(2)s−2 + h(3)s−3 + · · ·
If the triplet (A, b, c) is a realization of ĝ(s), then

ĝ(s) = c(sI − A)−1b = c[s(I − s−1A)]−1b

which becomes, using (3.57),

ĝ(s) = cbs−1 + cAbs−2 + cA2bs−3 + · · ·
Thus we conclude that (A, b, c) is a realization of ĝ(s) if and only if

h(m) = cAm−1b for m = 1, 2, . . . (7.52)

Substituting (7.52) into the Hankel matrix T(n, n) yields

T(n, n) =




cb cAb cA2b · · · cAn−1b
cAb cA2b cA3b · · · cAnb
cA2b cA3b cA4b · · · cAn+1b

...
...

...
. . .

...

cAn−1b cAnb cAn+1b · · · cA2(n−1)b




which implies, as shown in (7.21),

T(n, n) = OC (7.53)

where O and C are, respectively, then×nobservability and controllability matrices of (A, b, c).
Define

T̃(n, n) =




h(2) h(3) h(4) · · · h(n + 1)

h(3) h(4) h(5) · · · h(n + 2)

h(4) h(5) h(6) · · · h(n + 3)

...
...

...
. . .

...

h(n + 1) h(n + 2) h(n + 3) · · · h(2n)


 (7.54)

It is the submatrix of T(n + 1, n) by deleting the first row or the submatrix of T(n, n + 1) by
deleting the first column. Then as with (7.53), we can readily show

7.5 Realizations from Markov Parameters 203

T̃(n, n) = OAC (7.55)

Using (7.53) and (7.55), we can obtain many different realizations. We discuss here only a
companion-form and a balanced-form realization.

Companion form There are many ways to decompose T(n, n) into OC . The simplest is
to select O = I or C = I. If we select O = I, then (7.53) and (7.55) imply C = T(n, n)

and A = T̃(n, n)T−1(n, n).The state equation corresponding to O = I, C = T(n, n), and
A = T̃(n, n)T−1(n, n) is

ẋ =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

−αn −αn−1 −αn−2 · · · −α2 −α1


 x +




h(1)

h(2)

...

h(n − 1)

h(n)


 u

y = [1 0 0 · · · 0 0]x (7.56)

Indeed, the first row of O = I and the first column of C = T(n, n) yield the c and b in (7.56).
Instead of showing A = T̃(n, n)T−1(n, n), we show

AT(n, n) = T̃(n, n) (7.57)

Using the shifting property of the companion-form matrix in (7.56), we can readily verify

A




h(1)

h(2)

...

h(n)


 =




h(2)

h(3)

...

h(n + 1)


 , A




h(2)

h(3)

...

h(n + 1)


 =




h(3)

h(4)

...

h(n + 2)


 , · · · (7.58)

We see that the Markov parameters of a column are shifted up one position if the column
is premultiplied by A. Using this property, we can readily establish (7.57). Thus O = I,
C = T(n, n), and A = T̃(n, n)T−1(n, n) generate the realization in (7.56). It is a companion-
form realization. Now we use (7.52) to show that (7.56) is indeed a realization. Because of the
form of c, cAmb equals simply the top entry of Amb or

cb = h(1), cAb = h(2), cA2b = h(3), . . .

Thus (7.56) is a realization of ĝ(s). The state equation is always observable because O = I
has full rank. It is controllable if C = T(n, n) has rank n.

Example 7.2 Consider

ĝ(s) = 4s2 − 2s − 6

2s4 + 2s3 + 2s2 + 3s + 1

= 0 · s−1 + 2s−2 − 3s−3 − 2s−4 + 2s−5 + 3.5s−6 + · · · (7.59)

We form T(4, 4) and compute its rank. The rank is 3; thus ĝ(s) in (7.59) has degree 3 and its

204 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

numerator and denominator have a common factor of degree 1. There is no need to cancel first
the common factor in the expansion in (7.59). From the preceding derivation, we have

A =

 2 −3 −2

−3 −2 2

−2 2 3.5




 0 2 −3

2 −3 −2

−3 −2 2




−1

=

 0 1 0

0 0 1

−0.5 −1 0


 (7.60)

and

b = [0 2 − 3]′ c = [1 0 0]

The triplet (A, b, c) is a minimal realization of ĝ(s) in (7.59).
We mention that the matrix A in (7.60) can be obtained without computing T̃(n, n)

T−1(n, n). Using (7.49) we can show

T(3, 4)a :=

 0 2 −3 −2

2 −3 −2 2

−3 −2 2 3.5






α3

α2

α1

1


 = 0

Thus a is a null vector of T(3, 4). The MATLAB function

t=[0 2 -3 -2;2 -3 -2 2;-3 -2 2 3.5];a=null(t)

yields a=[−0.3333 − 0.6667 0.0000 − 0.6667]′. We normalize the last entry of a to 1 by
typing a/a(4), which yields [0.5 1 0 1]′. The first three entries, with sign reversed, are the
last row of A.

Balanced form Next we discuss a different decomposition of T(n, n) = OC , which will
yield a realization with the property

CC ′ = O′O

First we use singular-value decomposition to express T(n, n)as

T(n, n) = K�L′ = K�1/2�1/2L′ (7.61)

where K and L are orthogonal matrices and �1/2 is diagonal with the singular values of T(n, n)

on the diagonal. Let us select

O = K�1/2 and C = �1/2L′ (7.62)

Then we have

O−1 = �−1/2K′ and C−1 = L�−1/2 (7.63)

For this selection of C and O, the triplet

A = O−1T̃(n, n)C−1 (7.64)

b = first column of C (7.65)

c = first row of O (7.66)

7.6 Degree of Transfer Matrices 205

is a minimal realization of ĝ(s). For this realization, we have

CC ′ = �1/2L′L�1/2 = �

and

O′O = �1/2K′K�1/2 = � = CC ′

Thus it is called a balanced realization. This balanced realization is different from the balanced
realization discussed in Section 7.4. It is not clear what the relationships between them are.

Example 7.3 Consider the transfer function in Example 7.2. Now we will find a balanced
realization from Hankel matrices. We type

t=[0 2 -3;2 -3 -2;-3 -2 2];tt=[2 -3 -2;-3 -2 2;-2 2 3.5];

[k,s,l]=svd(t);

s1=sqrt(s);

O=k*s1;C=s1*l’;

a=inv(O)*tt*inv(C),

b=[C(1,1);C(2,1);C(3,1)],c=[O(1,1) O(1,2) O(1,3)]

This yields the following balanced realization:

ẋ =

 0.4003 −1.0024 −0.4805

1.0024 −0.3121 0.3209

0.4805 0.3209 −0.0882


 x +


 1.2883

−0.7303

1.0614


 u

y = [1.2883 0.7303 − 1.0614]x + 0 · u

To check the correctness of this result, we type [n,d]=ss2tf(a,b,c,0), which yields

ĝ(s) = 2s − 3

s3 + s + 0.5

This equals ĝ(s) in (7.59) after canceling the common factor 2(s + 1).

7.6 Degree of Transfer Matrices

This section will extend the concept of degree for scalar rational functions to rational matrices.
Given a proper rational matrix Ĝ(s), it is assumed that every entry of Ĝ(s) is a coprime
fraction; that is, its numerator and denominator have no common factors. This will be a standing
assumption throughout the remainder of this text.

Definition 7.1 The characteristic polynomial of a proper rational matrix Ĝ(s) is defined
as the least common denominator of all minors of Ĝ(s). The degree of the characteristic
polynomial is defined as the McMillan degree or, simply, the degree of Ĝ(s) and is
denoted by δĜ(s).

206 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

Example 7.4 Consider the rational matrices

Ĝ1(s) =
[1

s+1
1

s+1
1

s+1
1

s+1

]
Ĝ2(s) =

[2
s+1

1
s+1

1
s+1

1
s+1

]

The matrix Ĝ1(s) has 1/(s + 1), 1/(s + 1), 1/(s + 1), and 1/(s + 1) as its minors of order 1,
and det Ĝ1(s) = 0 as its minor of order 2. Thus the characteristic polynomial of Ĝ1(s) is s + 1
and δĜ1(s) = 1. The matrix Ĝ2(s) has 2/(s + 1), 1/(s + 1), 1/(s + 1), and 1/(s + 1) as its
minors of order 1, and det Ĝ2(s) = 1/(s + 1)2 as its minor of order 2. Thus the characteristic
polynomial of Ĝ2(s) is (s + 1)2 and δĜ2(s) = 2.

From this example, we see that the characteristic polynomial of Ĝ(s) is, in general,
different from the denominator of the determinant of Ĝ(s) [if Ĝ(s) is square] and different
from the least common denominator of all entries of Ĝ(s).

Example 7.5 Consider the 2 × 3 rational matrix

Ĝ(s) =



s

s + 1

1

(s + 1)(s + 2)

1

s + 3
−1

s + 1

1

(s + 1)(s + 2)

1

s




Its minors of order 1 are the six entries of Ĝ(s). The matrix has the following three minors of
order 2:

s

(s + 1)2(s + 2)
+ 1

(s + 1)2(s + 2)
= s + 1

(s + 1)2(s + 2)
= 1

(s + 1)(s + 2)

s

s + 1
· 1

s
+ 1

(s + 1)(s + 3)
= s + 4

(s + 1)(s + 3)

1

(s + 1)(s + 2)s
− 1

(s + 1)(s + 2)(s + 3)
= 3

s(s + 1)(s + 2)(s + 3)

The least common denominator of all these minors is s(s + 1)(s + 2)(s + 3). Thus the degree
of Ĝ(s) is 4. Note that Ĝ(s) has no minors of order 3 or higher.

In computing the characteristic polynomial, every minor must be reduced to a coprime
fraction as we did in the preceding example; otherwise, we will obtain an erroneous result.
We discuss two special cases. If Ĝ(s) is 1 × p or q × 1, then there are no minors of order
2 or higher. Thus the characteristic polynomial equals the least common denominator of all
entries of Ĝ(s). In particular, if Ĝ(s) is scalar, then the characteristic polynomial equals its
denominator. If every entry of q × p Ĝ(s) has poles that differ from those of all other entries,
such as

Ĝ(s) =



1

(s + 1)2(s + 2)

s + 2

s2

s − 2

s + 3

s

(s + 5)(s − 3)




then its minors contain no poles with multiplicities higher than those of each entry. Thus the
characteristic polynomial equals the product of the denominators of all entries of Ĝ(s).

7.7 Minimal Realizations—Matrix Case 207

To conclude this section, we mention two important properties. Let (A, B, C, D) be a
controllable and observable realization of Ĝ(s). Then we have the following:

● Monic least common denominator of all minors of Ĝ(s) = characteristic polynomial of A.

● Monic least common denominator of all entries of Ĝ(s) = minimal polynomial of A.

For their proofs, see Reference [4, pp. 302–304].

7.7 Minimal Realizations—Matrix Case

We introduced in Section 7.2.1 minimal realizations for scalar transfer functions. Now we
discuss the matrix case.

� Theorem 7.M2

A state equation (A, B, C, D) is a minimal realization of a proper rational matrix Ĝ(s) if and only if
(A, B) is controllable and (A, C) is observable or if and only if

dim A = deg Ĝ(s)

Proof: The proof of the first part is similar to the proof of Theorem 7.2. If (A, B) is not
controllable or if (A, C) is not observable, then the state equation is zero-state equivalent
to a lesser-dimensional state equation and is not minimal. If (A, B, C, D) is of dimension
n and is controllable and observable, and if the n̄-dimensional state equation (Ā, B̄, C̄, D̄),
with n̄ < n, is a realization of Ĝ(s), then Theorem 4.1 implies D = D̄ and

CAmB = C̄Ā
m

B̄ for m = 0, 1, 2, . . .

Thus, as in (7.22), we have

OC = ŌnC̄n

Note that O, C , Ōn, and C̄n are, respectively, nq ×n, n×np, nq × n̄, and n̄×np matrices.
Using the Sylvester inequality

ρ(O) + ρ(C) − n ≤ ρ(OC) ≤ min(ρ(O), ρ(C))

which is proved in Reference [6, p. 31], and ρ(O) = ρ(C) = n, we have ρ(OC) = n.
Similarly, we have ρ(ŌnC̄n) = n̄ < n. This contradicts ρ(OC) = ρ(ŌnCn). Thus every
controllable and observable state equation is a minimal realization.

To show that (A, B, C, D) is minimal if and only if dim A = deg Ĝ(s) is much more
complex and will be established in the remainder of this chapter. Q.E.D.

� Theorem 7.M3

All minimal realizations of Ĝ(s) are equivalent.

208 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

Proof: The proof follows closely the proof of Theorem 7.3. Let (A, B, C, D) and (Ā, B̄,

C̄, D̄) be any two n-dimensional minimal realizations of a q × p proper rational matrix
Ĝ(s). As in (7.23) and (7.24), we have

OC = ŌC̄ (7.67)

and

OAC = ŌĀC̄ (7.68)

In the scalar case, O, C , Ō, and C̄ are all n×n nonsingular matrices and their inverses are
well defined. Here O and Ō are nq × n matrices of rank n; C and C̄ are n × np matrices
of rank n. They are not square and their inverses are not defined. Let us define the n × nq

matrix

O+ := (O′O)−1O′ (7.69)

Because O′ is n×nq and O is nq ×n, the matrix O′O is n×n and is, following Theorem
3.8, nonsingular. Clearly, we have

O+O = (O′O)−1O′O = I

Thus O+ is called the pseudoinverse or left inverse of O. Note that OO+ is nq × nq and
does not equal a unit matrix. Similarly, we define

C+ := C ′(CC ′)−1 (7.70)

It is an np × n matrix and has the property

CC+ = CC ′(CC ′)−1 = I

Thus C+ is called the pseudoinverse or right inverse of C . In the scalar case, the
equivalence transformation is defined in (7.25) as P = Ō−1O = C̄C−1. Now we replace
inverses by pseudoinverses to yield

P := Ō+O = (Ō′Ō)−1Ō′O (7.71)

= C̄C+ = C̄C ′(CC ′)−1 (7.72)

This equality can be verified directly by premultiplying (Ō′Ō) and postmultiplying (CC ′)
and then using (7.67). The inverse of P in the scalar case is P−1 = O−1Ō = CC̄−1. In
the matrix case, it becomes

P−1 := O+Ō = (O′O)−1O′Ō (7.73)

= CC̄+ = CC̄ ′(C̄ C̄ ′)−1 (7.74)

This again can be verified using (7.67). From ŌC̄ = OC , we have

C̄ = (Ō′Ō)−1Ō′OC = PC

Ō = OCC̄ ′(C̄ C̄ ′)−1 = OP−1

Their first p columns and first q rows are B̄ = PB and C̄ = CP−1. The equation
ŌĀC̄ = OAC implies

7.8 Matrix Polynomial Fractions 209

Ā = (Ō′Ō)−1Ō′OACC̄ ′(C̄ C̄ ′)−1 = PAP−1

This shows that all minimal realizations of the same transfer matrix are equivalent.
Q.E.D.

We see from the proof of Theorem 7.M3 that the results in the scalar case can be extended
directly to the matrix case if inverses are replaced by pseudoinverses. In MATLAB, the function
pinv generates the pseudoinverse. We mention that minimal realization can be obtained from
nonminimal realizations by applying Theorems 6.6 and 6.O6 or by calling the MATLAB
function minreal, as the next example illustrates.

Example 7.6 Consider the transfer matrix in Example 4.6 or

Ĝ(s) =



4s − 10

2s + 1

3

s + 2
1

(2s + 1)(s + 2)

1

(s + 2)2


 (7.75)

Its characteristic polynomial can be computed as (2s +1)(s +2)2. Thus the rational matrix has
degree 3. Its six-dimensional realization in (4.39) and four-dimensional realization in (4.44)
are clearly not minimal realizations. They can be reduced to minimal realizations by calling
the MATLAB function minreal. For example, for the realization in (4.39) typing

a=[-4.5 0 -6 0 -2 0;0 -4.5 0 -6 0 -2;1 0 0 0 0 0;...

0 1 0 0 0 0;0 0 1 0 0 0;0 0 0 1 0 0];

b=[1 0;0 1;0 0;0 0;0 0;0 0];

c=[-6 3 -24 7.5 -24 3;0 1 0.5 1.5 1 0.5];d=[2 0;0 0];

[am,bm,cm,dm]=minreal(a,b,c,d)

yields

ẋ =

−0.8625 −4.0897 3.2544

0.2921 −3.0508 1.2709

−0.0944 0.3377 −0.5867


 x +


 0.3218 −0.5305

0.0459 −0.4983

−0.1688 0.0840


u

y =
[

0 −0.0339 35.5281

0 −2.1031 −0.5720

]
x +

[
2 0

0 0

]
u

Its dimension equals the degree of Ĝ(s); thus it is controllable and observable and is a minimal
realization of Ĝ(s) in (7.75).

7.8 Matrix Polynomial Fractions

The degree of the scalar transfer function

ĝ(s) = N(s)

D(s)
= N(s)D−1(s) = D−1(s)N(s)

is defined as the degree of D(s) if N(s) and D(s) are coprime. It can also be defined as
the smallest possible denominator degree. In this section, we shall develop similar results for

210 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

transfer matrices. Because matrices are not commutative, their orders cannot be altered in our
discussion.

Every q × p proper rational matrix Ĝ(s) can be expressed as

Ĝ(s) = N(s)D−1(s) (7.76)

where N(s) and D(s) are q ×p and p×p polynomial matrices. For example, the 2×3 rational
matrix in Example 7.5 can be expressed as

Ĝ(s) =
[

s 1 s

−1 1 s + 3

] s + 1 0 0

0 (s + 1)(s + 2) 0

0 0 s(s + 3)




−1

(7.77)

The three diagonal entries of D(s) in (7.77) are the least common denominators of the three
columns of Ĝ(s). The fraction in (7.76) or (7.77) is called a right polynomial fraction or,
simply, right fraction. Dual to (7.76), the expression

Ĝ(s) = D̄−1(s)N̄(s)

where D̄(s) and N̄(s) are q × q and q × p polynomial matrices, is called a left polynomial
fraction or, simply, left fraction.

Let R(s) be any p × p nonsingular polynomial matrix. Then we have

Ĝ(s) = [N(s)R(s)][D(s)R(s)]−1

= N(s)R(s)R−1(s)D−1(s) = N(s)D−1(s)

Thus right fractions are not unique. The same holds for left fractions. We introduce in the
following right coprime fractions.

Consider A(s) = B(s)C(s), where A(s), B(s), and C(s) are polynomials of compatible
orders. We call C(s) a right divisor of A(s) and A(s) a left multiple of C(s). Similarly, we call
B(s) a left divisor of A(s) and A(s) a right multiple of B(s).

Consider two polynomial matrices D(s) and N(s) with the same number of columns p.
A p × p square polynomial matrix R(s) is called a common right divisor of D(s) and N(s) if
there exist polynomial matrices D̂(s) and N̂(s) such that

D(s) = D̂(s)R(s) and N(s) = N̂(s)R(s)

Note that D(s) and N(s) can have different numbers of rows.

Definition 7.2 A square polynomial matrix M(s) is called a unimodular matrix if its
determinant is nonzero and independent of s.

The following polynomial matrices are all unimodular matrices:[
2s s2 + s + 1

2 s + 1

]
,

[−2 s10 + s + 1

0 3

]
,

[
s s + 1

s − 1 s

]

Products of unimodular matrices are clearly unimodular matrices. Consider

det M(s)det M−1(s) = det [M(s)M−1(s)] = det I = 1

7.8 Matrix Polynomial Fractions 211

which implies that if the determinant of M(s) is a nonzero constant, so is the determinant of
M−1(s). Thus the inverse of a unimodular matrix M(s) is again a unimodular matrix.

Definition 7.3 A square polynomial matrix R(s) is a greatest common right divisor
(gcrd) of D(s) and N(s) if (i) R(s) is a common right divisor of D(s) and N(s) and (ii)
R(s) is a left multiple of every common right divisor of D(s) and N(s). If a gcrd is a
unimodular matrix, then D(s) and N(s) are said to be right coprime.

Dual to this definition, a square polynomial matrix R̄(s) is a greatest common left divisor
(gcld) of D̄(s) and N̄(s) if (i) R̄(s) is a common left divisor of D̄(s) and N̄(s) and (ii) R̄(s)

is a right multiple of every common left divisor of D̄(s) and N̄(s). If a gcld is a unimodular
matrix, then D̄(s) and N̄(s) are said to be left coprime.

Definition 7.4 Consider a proper rational matrix Ĝ(s) factored as

Ĝ(s) = N(s)D−1(s) = D̄−1(s)N̄(s)

where N(s) and D(s) are right coprime, and N̄(s) and D̄(s) are left coprime. Then the
characteristic polynomial of Ĝ(s) is defined as

det D(s) or det D̄(s)

and the degree of Ĝ(s) is defined as

deg Ĝ(s) = deg det D(s) = deg det D̄(s)

Consider

Ĝ(s) = N(s)D−1(s) = [N(s)R(s)][D(s)R(s)]−1 (7.78)

where N(s) and D(s) are right coprime. Define D1(s) = D(s)R(s) and N1(s) = N(s)R(s).
Then we have

det D1(s) = det[D(s)R(s)] = det D(s) det R(s)

which implies

deg det D1(s) = deg det D(s) + deg det R(s)

Clearly we have deg det D1(s) ≥ deg det D(s) and the equality holds if and only if R(s) is
unimodular or, equivalently, N1(s) and D1(s) are right coprime. Thus we conclude that if
N(s)D−1(s) is a coprime fraction, then D(s) has the smallest possible determinantal degree
and the degree is defined as the degree of the transfer matrix. Therefore a coprime fraction can
also be defined as a polynomial matrix fraction with the smallest denominator’s determinantal
degree. From (7.78), we can see that coprime fractions are not unique; they can differ by
unimodular matrices.

We have introduced Definitions 7.1 and 7.4 to define the degree of rational matrices. Their

212 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

equivalence can be established by using the Smith–McMillan form and will not be discussed
here. The interested reader is referred to, for example, Reference [3].

7.8.1 Column and Row Reducedness

In order to apply Definition 7.4 to determine the degree of Ĝ(s) = N(s)D−1(s), we must
compute the determinant of D(s). This can be avoided if the coprime fraction has some
additional property as we will discuss next.

The degree of a polynomial vector is defined as the highest power of s in all entries of
the vector. Consider a polynomial matrix M(s). We define

δciM(s) = degree of ith column of M(s)

δriM(s) = degree of ith row of M(s)

and call δci the column degree and δri the row degree. For example, the matrix

M(s) =
[

s + 1 s3 − 2s + 5 −1

s − 1 s2 0

]

has δc1 = 1, δc2 = 3, δc3 = 0, δr1 = 3, and δr2 = 2.

Definition 7.5 A nonsingular polynomial matrix M(s) is column reduced if

deg det M(s) = sum of all column degrees

It is row reduced if

deg det M(s) = sum of all row degrees

A matrix can be column reduced but not row reduced and vice versa. For example, the
matrix

M(s) =
[

3s2 + 2s 2s + 1

s2 + s − 3 s

]
(7.79)

has determinant s3 − s2 +5s +3. Its degree equals the sum of its column degrees 2 and 1. Thus
M(s) in (7.79) is column reduced. The row degrees of M(s) are 2 and 2; their sum is larger
than 3. Thus M(s) is not row reduced. A diagonal polynomial matrix is always both column
and row reduced. If a square polynomial matrix is not column reduced, then the degree of its
determinant is less than the sum of its column degrees. Every nonsingular polynomial matrix
can be changed to a column- or row-reduced matrix by pre- or postmultiplying a unimodular
matrix. See Reference [6, p. 603].

Let δciM(s) = kci and define Hc(s) = diag(skc1 , skc2 , . . .). Then the polynomial matrix
M(s) can be expressed as

M(s) = MhcHc(s) + Mlc(s) (7.80)

For example, the M(s) in (7.79) has column degrees 2 and 1 and can be expressed as

7.8 Matrix Polynomial Fractions 213

M(s) =
[

3 2

1 1

] [
s2 0

0 s

]
+
[

2s 1

s − 3 0

]

The constant matrix Mhc is called the column-degree coefficient matrix; its ith column is the
coefficients of the ith column of M(s) associated with skci . The polynomial matrix Mlc(s)

contains the remaining terms and its ith column has degree less than kci . If M(s) is expressed
as in (7.80), then it can be verified that M(s) is column reduced if and only if its column-degree
coefficient matrix Mhc is nonsingular. Dual to (7.80), we can express M(s) as

M(s) = Hr (s)Mhr + Mlr (s)

where δriM(s) = kri and Hr (s) = diag(skr1 , skr2 , . . .). The matrix Mhr is called the row-degree
coefficient matrix. Then M(s) is row reduced if and only if Mhr is nonsingular.

Using the concept of reducedness, we now can state the degree of a proper rational matrix
as follows. Consider Ĝ(s) = N(s)D−1(s) = D̄−1(s)N̄(s), where N(s) and D(s) are right
coprime, N̄(s) and D̄(s) are left coprime, D(s) is column reduced, and D̄(s) is row reduced.
Then we have

deg Ĝ(s) = sum of column degrees of D(s)

= sum of row degrees of D̄(s)

We discuss another implication of reducedness. Consider Ĝ(s) = N(s)D−1(s). If Ĝ(s)

is strictly proper, then δciN(s) < δciD(s), for i = 1, 2, . . . , p; that is, the column degrees
of N(s) are less than the corresponding column degrees of D(s). If Ĝ(s) is proper, then
δciN(s) ≤ δciD(s), for i = 1, 2, . . . , p. The converse, however, is not necessarily true. For
example, consider

N(s)D−1(s) = [1 2]

[
s2 s − 1

s + 1 1

]−1

=
[−2s − 1

1

2s2 − s + 1

1

]

Although δciN(s) < δciD(s) for i = 1, 2, N(s)D−1(s) is not strictly proper. The reason is that
D(s) is not column reduced.

� Theorem 7.8

Let N(s) and D(s) be q × p and p × p polynomial matrices, and let D(s) be column reduced. Then
the rational matrix N(s)D−1(s) is proper (strictly proper) if and only if

δciN(s) ≤ δciD(s) [δciN(s) < δciD(s)]

for i = 1, 2, . . . , p.

Proof: The necessity part of the theorem follows from the preceding example. We show
the sufficiency. Following (7.80), we express

D(s) = DhcHc(s) + Dlc(s) = [Dhc + Dlc(s)H−1
c (s)]Hc(s)

N(s) = NhcHc(s) + Nlc(s) = [Nhc + Nlc(s)H−1
c (s)]Hc(s)

Then we have

214 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

Ĝ(s) := N(s)D−1(s) = [Nhc + Nlc(s)H−1
c (s)][Dhc + Dlc(s)H−1

c (s)]−1

Because Dlc(s)H−1
c (s) and Nlc(s)H−1

c (s) both approach zero as s → ∞, we have

lim
s→∞ Ĝ(s) = NhcD−1

hc

where Dhc is nonsingular by assumption. Now if δciN(s) ≤ δciD(s), then Nhc is a nonzero
constant matrix. Thus Ĝ(∞) is a nonzero constant and Ĝ(s) is proper. If δciN(s) < δciD(s),
then Nhc is a zero matrix. Thus Ĝ(∞) = 0 and Ĝ(s) is strictly proper. This establishes
the theorem. Q.E.D.

We state the dual of Theorem 7.8 without proof.

� Corollary 7.8

Let N̄(s) and D̄(s) be q × p and q × q polynomial matrices, and let D̄(s) be row reduced. Then
the rational matrix D̄−1(s)N̄(s) is proper (strictly proper) if and only if

δriN̄(s) ≤ δriD̄(s) [δriN̄(s) < δriD̄(s)]

for i = 1, 2, . . . , q .

7.8.2 Computing Matrix Coprime Fractions

Given a right fraction N(s)D−1(s), one way to reduce it to a right coprime fraction is to
compute its gcrd. This can be achieved by applying a sequence of elementary operations.
Once a gcrd R(s) is computed, we compute N̂(s) = N(s)R−1(s) and D̂(s) = D(s)R−1(s).
Then N(s)D−1(s) = N̂(s)D̂−1(s) and N̂(s)D̂−1(s) is a right coprime fraction. If D̂(s) is not
column reduced, then additional manipulation is needed. This procedure will not be discussed
here. The interested reader is referred to Reference [6, pp. 590–591].

We now extend the method of computing scalar coprime fractions in Section 7.3 to the
matrix case. Consider a q × p proper rational matrix Ĝ(s) expressed as

Ĝ(s) = D̄−1(s)N̄(s) = N(s)D−1(s) (7.81)

In this section, we use variables with an overbar to denote left fractions, without an overbar to
denote right fractions. Clearly (7.81) implies

N̄(s)D(s) = D̄(s)N(s)

and

D̄(s)(−N(s)) + N̄(s)D(s) = 0 (7.82)

We shall show that given a left fraction D̄−1(s)N̄(s), not necessarily left coprime, we can
obtain a right coprime fraction N(s)D−1(s) by solving the polynomial matrix equation in
(7.82). Instead of solving (7.82) directly, we shall change it into solving sets of linear algebraic
equations. As in (7.27), we express the polynomial matrices as, assuming the highest degree
to be 4 to simplify writing,

7.8 Matrix Polynomial Fractions 215

D̄(s) = D̄0 + D̄1s + D̄2s
2 + D̄3s

3 + D̄4s
4

N̄(s) = N̄0 + N̄1s + N̄2s
2 + N̄3s

3 + N̄4s
4

D(s) = D0 + D1s + D2s
2 + D3s

3

N(s) = N0 + N1s + N2s
2 + N3s

3

where D̄i , N̄i , Di , and Ni are, respectively, q × q, q × p, p × p, and q × p constant matrices.
The constant matrices D̄i and N̄i are known, and Di and Ni are to be solved. Substituting these
into (7.82) and equating to zero the constant matrices associated with sk , for k = 0, 1, . . . ,

we obtain

SM :=




D̄0 N̄0
... 0 0

... 0 0
... 0 0

D̄1 N̄1
... D̄0 N̄0

... 0 0
... 0 0

D̄2 N̄2
... D̄1 N̄1

... D̄0 N̄0
... 0 0

D̄3 N̄3
... D̄2 N̄2

... D̄1 N̄1
... D̄0 N̄0

D̄4 N̄4
... D̄3 N̄3

... D̄2 N̄2
... D̄1 N̄1

0 0
... D̄4 N̄4

... D̄3 N̄3
... D̄2 N̄2

0 0
... 0 0

... D̄4 N̄4
... D̄3 N̄3

0 0
... 0 0

... 0 0
... D̄4 N̄4







−N0

D0

· · ·
−N1

D1

· · ·
−N2

D2

· · ·
−N3

D3




= 0 (7.83)

This equation is the matrix version of (7.28) and the matrix S will be called a generalized
resultant. Note that every D̄-block column has q D̄-columns and every N̄ -block column has p

N̄ -columns. The generalized resultant S as shown has four pairs of D̄- and N̄ -block columns;
thus it has a total of 4(q + p) columns. It has eight block rows; each block rows has q rows.
Thus the resultant has 8q rows.

We now discuss some general properties of S under the assumption that linearly indepen-
dent columns of S from left to right have been found. It turns out that every D̄-column in every
D̄-block column is linearly independent of its left-hand-side (LHS) columns. The situation for
N̄ -columns, however, is different. Recall that there are p N̄ -columns in each N̄ -block column.
We use N̄i-column to denote the ith N̄ -column in each N̄ -block column. It turns out that if
the N̄i-column in some N̄ -block column is linearly dependent on its LHS columns, then all
subsequent N̄i-columns, because of the repetitive structure of S, will be linearly dependent on
its LHS columns. Let µi , i = 1, 2, . . . , p, be the number of linearly independent N̄i-columns
in S. They are called the column indices of Ĝ(s). The first N̄i-column that becomes linearly
dependent on its LHS columns is called the primary dependent N̄i-column. It is clear that the
(µi + 1)th N̄i-column is the primary dependent column.

Corresponding to each primary dependent N̄i-column, we compute the monic null vector
(its last entry equals 1) of the submatrix that consists of the primary dependent N̄i-column and
all its LHS linearly independent columns. There are totally p such monic null vectors. From
these monic null vectors, we can then obtain a right fraction. This fraction is right coprime
because we use the least possible µi and the resulting D(s) has the smallest possible column

216 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

degrees. In addition, D(s) automatically will be column reduced. The next example illustrates
the procedure.

Example 7.7 Find a right coprime fraction of the transfer matrix in (7.75) or

Ĝ(s) =



4s − 10

2s + 1

3

s + 2
1

(2s + 1)(s + 2)

s + 1

(s + 2)2


 (7.84)

First we must find a left fraction, not necessarily left coprime. Using the least common
denominator of each row, we can readily obtain

Ĝ(s) =
[

(2s + 1)(s + 2) 0

0 (2s + 1)(s + 2)2

]−1

×
[

(4s − 10)(s + 2) 3(2s + 1)

s + 2 (s + 1)(2s + 1)

]
=: D̄−1(s)N̄(s)

Thus we have

D̄(s) =
[

2s2 + 5s + 2 0

0 2s3 + 9s2 + 12s + 4

]

=
[

2 0

0 4

]
+
[

5 0

0 12

]
s +

[
2 0

0 9

]
s2 +

[
0 0

0 2

]
s3

and

N̄(s) =
[

4s2 − 2s − 20 6s + 3

s + 2 2s2 + 3s + 1

]

=
[−20 3

2 1

]
+
[−2 6

1 3

]
s +

[
4 0

0 2

]
s2 +

[
0 0

0 0

]
s3

We form the generalized resultant and then use the QR decomposition discussed in Section
7.3.1 to search its linearly independent columns in order from left to right. Because it is simpler
to key in the transpose of S, we type

d1=[2 0 5 0 2 0 0 0];d2=[0 4 0 12 0 9 0 2];

n1=[-20 2 -2 1 4 0 0 0];n2=[3 1 6 3 0 2 0 0];

s=[d1 0 0 0 0;d2 0 0 0 0;n1 0 0 0 0;n2 0 0 0 0;...

0 0 d1 0 0;0 0 d2 0 0;0 0 n1 0 0;0 0 n2 0 0;...

0 0 0 0 d1;0 0 0 0 d2;0 0 0 0 n1;0 0 0 0 n2]’;

[q,r]=qr(s)

We need only r; therefore the matrix q will not be shown. As discussed in Section 7.3.1,
we need to know whether or not entries of r are zero in determining linear independence of
columns; therefore all nonzero entries are represented by x, di, and ni. The result is

7.8 Matrix Polynomial Fractions 217

r =




d1 0 x x x x x x x 0 x x

0 d2 x x x x x x 0 x x x

0 0 n1 x x x x x x x x x

0 0 0 n2 x x x x x x x x

0 0 0 0 d1 x x x x x x x

0 0 0 0 0 d2 x x x x x x

0 0 0 0 0 0 n1 x x x x x

0 0 0 0 0 0 0 0 x x x 0

0 0 0 0 0 0 0 0 d1 x x 0

0 0 0 0 0 0 0 0 0 d2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0




We see that all D-columns are linearly independent of their LHS columns. There are two
linearly independent N̄1-columns and one linearly independent N̄2-column. Thus we have
µ1 = 2 and µ2 = 1. The eighth column of S is the primary dependent N̄2-column. We
compute a null vector of the submatrix that consists of the primary dependent N̄2-column and
all its LHS linearly independent columns as

z2=null([d1 0 0;d2 0 0;n1 0 0;n2 0 0;...

0 0 d1;0 0 d2;0 0 n1;0 0 n2]’);

and then normalize the last entry to 1 by typing

z2b=z2/z2(8)

which yields the first monic null vector as

z2b=[7 -1 1 2 -4 0 2 1]’

The eleventh column of S is the primary dependent N̄1-column. We compute a null vector
of the submatrix that consists of the primary dependent N̄1-column and all its LHS linearly
independent columns (that is, deleting the eighth column) as

z1=null([d1 0 0 0 0;d2 0 0 0 0;n1 0 0 0 0;n2 0 0 0 0;...

0 0 d1 0 0;0 0 d2 0 0;0 0 n1 0 0;...

0 0 0 0 d1;0 0 0 0 d2;0 0 0 0 n1]’);

and then normalize the last entry to 1 by typing

z1b=z1/z1(10)

which yields the second monic null vector as

z1b=[10 -0.5 1 0 1 0 2.5 -2 0 1]’

218 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

Thus we have




−N0

· · ·
D0

· · ·
−N1

· · ·
D1

· · ·
−N2

· · ·
D2




=




−n11
0 −n12

0

−n21
0 −n22

0

· · · · · ·
d11

0 d12
0

d21
0 d22

0

· · · · · ·
−n11

1 −n12
1

−n21
1 −n22

1

· · · · · ·
d11

1 d12
1

d21
1 d22

1

· · · · · ·
−n11

2 −n12
2

−n21
2 −n22

2

· · · · · ·
d11

2 d12
2

d21
2 d22

2




=




10 7

−0.5 −1

· · · · · ·
1 1

0 2

· · · · · ·
1 −4

0 0

· · · · · ·
2.5 2

1

· · · · · ·
−2

0

· · · · · ·
1




(7.85)

where we have written out Ni and Di explicitly with the superscripts ij denoting the ij th entry
and the subscript denoting the degree. The two monic null vectors are arranged as shown. The
order of the two null vectors can be interchanged, as we will discuss shortly. The empty entries
are to be filled up with zeros. Note that the empty entry at the (8 × 1)th location is due to
deleting the second N̄2 linearly dependent column in computing the second null vector. By
equating the corresponding entries in (7.85), we can readily obtain

D(s) =
[

1 1

0 2

]
+
[

2.5 2

0 1

]
s +

[
1 0

0 0

]
s2

=
[

s2 + 2.5s + 1 2s + 1

0 s + 2

]

and

N(s) =
[−10 −7

0.5 1

]
+
[−1 4

0 0

]
s +

[
2 0

0 0

]
s2

=
[

2s2 − s − 10 4s − 7

0.5 1

]

Thus Ĝ(s) in (7.84) has the following right coprime fraction

Ĝ(s) =
[

(2s − 5)(s + 2) 4s − 7

0.5 1

] [
(s + 2)(s + 0.5) 2s + 1

0 s + 2

]−1

(7.86)

The D(s) in (7.86) is column reduced with column degrees µ1 = 2 and µ2 = 1. Thus we have
deg det D(s) = 2 + 1 = 3 and the degree of Ĝ(s) in (7.84) is 3. The degree was computed in
Example 7.6 as 3 by using Definition 7.1.

7.8 Matrix Polynomial Fractions 219

In general, if the generalized resultant has µi linearly independent N̄i-columns, then
D(s) computed using the preceding procedure is column reduced with column degrees µi .
Thus we have

deg Ĝ(s) = deg det D(s) =
∑

µi

= total number of linearly independent N̄ -columns in S

We next show that the order of column degrees is immaterial. In other words, the order of
the columns of N(s) and D(s) can be changed. For example, consider the permutation matrix

P =

 0 0 1

1 0 0

0 1 0




and D̂(s) = D(s)P and N̂(s) = N(s)P. Then the first, second, and third columns of D(s) and
N(s) become the third, first, and second columns of D̂(s) and N̂(s). However, we have

Ĝ(s) = N̂(s)D̂−1(s) = [N(s)P][D(s)P]−1 = N(s)D−1(s)

This shows that the columns of D(s) and N(s) can arbitrarily be permutated. This is the same as
permuting the order of the null vectors in (7.83). Thus the set of column degrees is an intrinsic
property of a system just as the set of controllability indices is (Theorem 6.3). What has been
discussed can be stated as a theorem. It is an extension of Theorem 7.4 to the matrix case.

� Theorem 7.M4

Let Ĝ(s) = D̄−1(s)N̄(s) be a left fraction, not necessarily left coprime. We use the coefficient matrices
of D̄(s) and N̄(s) to form the generalized resultant S shown in (7.83) and search its linearly independent
columns from left to right. Let µi , i = 1, 2, . . . , p, be the number of linearly independent N̄i-columns.
Then we have

deg Ĝ(s) = µ1 + µ2 + · · · + µp (7.87)

and a right coprime fraction N(s)D−1(s) can be obtained by computing p monic null vectors of the p
matrices formed from each primary dependent N̄i-column and all its LHS linearly independent columns.

The right coprime fraction obtained by solving the equation in (7.83) has one additional
important property. After permutation, the column-degree coefficient matrix Dhc can always
become a unit upper triangular matrix (an upper triangular matrix with 1 as its diagonal entries).
Such a D(s) is said to be in column echelon form. See References [6, pp. 610–612; 13, pp.
483–487]. For the D(s) in (7.86), its column-degree coefficient matrix is

Dhc =
[

1 2

0 1

]

It is unit upper triangular; thus the D(s) is in column echelon form. Although we need only
column reducedness in subsequent discussions, if D(s) is in column echelon form, then the
result in the next section will be nicer.

Dual to the preceding discussion, we can compute a left coprime fraction from a right
fraction N(s)D−1(s), which is not necessarily right coprime. Then similar to (7.83), we form

220 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

[−N̄0 D̄0
... − N̄1 D̄1

... − N̄2 D̄2
... − N̄3 D̄3]T = 0 (7.88)

with

T :=




D0 D1 D2 D3 D4 0 0 0
N0 N1 N2 N3 N4 0 0 0
· ·
0 D0 D1 D2 D3 D4 0 0
0 N0 N1 N2 N3 N4 0 0
· ·
0 0 D0 D1 D2 D3 D4 0
0 0 N0 N1 N2 N3 N4 0
· ·
0 0 0 D0 D1 D2 D3 D4

0 0 0 N0 N1 N2 N3 N4




(7.89)

We search linearly independent rows in order from top to bottom. Then all D-rows are linearly
independent. Let the Ni-row denote the ith N-row in each N block-row. If an Ni-row becomes
linearly dependent, then all Ni-rows in subsequent N block-rows are linearly dependent on
their preceding rows. The first Ni-row that becomes linearly dependent is called a primary
dependent Ni-row. Let νi , i = 1, 2, . . . , q, be the number of linearly independent Ni-rows.
They are called the row indices of Ĝ(s). Then dual to Theorem 7.M4, we have the following
corollary.

� Corollary 7.M4

Let Ĝ(s) = N(s)D−1(s) be a right fraction, not necessarily right coprime. We use the coefficient
matrices of D(s) and N(s) to form the generlized resultant T shown in (7.89) and search its linearly
independent rows in order from top to bottom. Let νi , for i = 1, 2, . . . , q , be the number of linearly
independent Ni-rows in T. Then we have

deg Ĝ(s) = ν1 + ν2 + · · · + νq

and a left coprime fraction D̄−1(s)N̄(s) can be obtained by computing q monic left null vectors of the
q matrices formed from each primary dependent Ni-row and all its preceding linearly independent rows.

The polynomial matrix D̄(s) obtained in Corollary 7.M4 is row reduced with row degrees
{νi, i = 1, 2, . . . , q}. In fact, it is in row echelon form; that is, its row-degree coefficient
matrix, after some row permutation, is a unit lower triangular matrix.

7.9 Realizations from Matrix Coprime Fractions

Not to be overwhelmed by notation, we discuss a realization of a 2 × 2 strictly proper rational
matrix Ĝ(s) expressed as

Ĝ(s) = N(s)D−1(s) (7.90)

7.9 Realizations from Matrix Coprime Fractions 221

where N(s) and D(s) are right coprime and D(s) is in column echelon form.6 We further assume
that the column degrees of D(s) are µ1 = 4 and µ2 = 2. First we define

H(s) :=
[

sµ1 0

0 sµ2

]
=
[

s4 0

0 s2

]
(7.91)

and

L(s) :=




sµ1−1 0
...

...

1 0

0 sµ2−1

...
...

0 1




=




s3 0

s2 0

s 0

1 0

0 s

0 1




(7.92)

The procedure for developing a realization for

ŷ(s) = Ĝ(s)û(s) = N(s)D−1(s)û(s)

follows closely the scalar case from (7.3) through (7.9). First we introduce a new variable v(t)

defined by v̂(s) = D−1(s)û(s). Note that v̂(s), called a pseudo state, is a 2 × 1 column vector.
Then we have

D(s)v̂(s) = û(s) (7.93)

ŷ(s) = N(s)v̂(s) (7.94)

Let us define state variables as

x̂(s) = L(s)v̂(s) =




sµ1−1 0
...

...

1 0

0 sµ2−1

...
...

0 1



[

v̂1(s)

v̂2(s)

]

=




s3v̂1(s)

s2v̂1(s)

sv̂1(s)

v̂1(s)

sv̂2(s)

v̂2(s)




=:




x1(s)

x2(s)

x3(s)

x4(s)

x5(s)

x6(s)




(7.95)

or, in the time domain,

x1(t) = v
(3)

1 (t) x2(t) = v̈1(t) x3(t) = v̇1(t) x4(t) = v1(t)

x5(t) = v̇2(t) x6(t) = v2(t)

6. All discussion is still applicable if D(s) is column reduced but not in echelon form.

222 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

This state vector has dimension µ1 + µ2 = 6. These definitions imply immediately

ẋ2 = x1 ẋ3 = x2 ẋ4 = x3 ẋ6 = x5 (7.96)

Next we use (7.93) to develop equations for ẋ1 and ẋ5. First we express D(s) as

D(s) = DhcH(s) + DlcL(s) (7.97)

where H(s) and L(s) are defined in (7.91) and (7.92). Note that Dhc and Dlc are constant
matrices and the column-degree coefficient matrix Dhc is a unit upper triangular matrix.
Substituting (7.97) into (7.93) yields

[DhcH(s) + DlcL(s)]v̂(s) = û(s)

or

H(s)v̂(s) + D−1
hc DlcL(s)v̂(s) = D−1

hc û(s)

Thus we have, using (7.95),

H(s)v̂(s) = −D−1
hc Dlcx̂(s) + D−1

hc û(s) (7.98)

Let

D−1
hc Dlc =:

[
α111 α112 α113 α114 α121 α122

α211 α212 α213 α214 α221 α222

]
(7.99)

and

D−1
hc =:

[
1 b12

0 1

]
(7.100)

Note that the inverse of a unit upper triangular matrix is again a unit upper triangular matrix.
Substituting (7.99) and (7.100) into (7.98), and using sx̂1(s) = s4v̂1(s), and sx̂5(s) = s2v̂2(s),
we find [

sx̂1(s)

sx̂5(s)

]
= −

[
α111 α112 α113 α114 α121 α122

α211 α212 α213 α214 α221 α222

]
x̂(s)

+
[

1 b12

0 1

]
û(s)

which becomes, in the time domain,[
ẋ1

ẋ5

]
= −

[
α111 α112 α113 α114 α121 α122

α211 α212 α213 α214 α221 α222

]
x +

[
1 b12

0 1

]
u (7.101)

If Ĝ(s) = N(s)D−1(s) is strictly proper, then the column degrees of N(s) are less than the
corresponding column degrees of D(s). Thus we can express N(s) as

N(s) =
[

β111 β112 β113 β114 β121 β122

β211 β212 β213 β214 β221 β222

]
L(s) (7.102)

7.9 Realizations from Matrix Coprime Fractions 223

Substituting this into (7.94) and using x̂(s) = L(s)v̂(s), we have

ŷ(s) =
[

β111 β112 β113 β114 β121 β122

β211 β212 β213 β214 β221 β222

]
x̂(s) (7.103)

Combining (7.96), (7.101), and (7.103) yields the following realization for Ĝ(s):

ẋ =




−α111 −α112 −α113 −α114
... −α121 −α122

1 0 0 0
... 0 0

0 1 0 0
... 0 0

0 0 1 0
... 0 0

· ·
−α211 −α212 −α213 −α214

... −α221 −α222

0 0 0 0
... 1 0




x

+




1 b12

0 0

0 0

0 0

· · · · · ·
0 1

0 0




u

y =

 β111 β112 β113 β114

... β121 β122

β211 β212 β213 β214
... β221 β222


 x

(7.104)

This is a (µ1+µ2)-dimensional state equation. The A-matrix has two companion-form diagonal
blocks: one with order µ1 = 4 and the other with order µ2 = 2. The off-diagonal blocks are
zeros except their first rows. This state equation is a generalization of the state equation in
(7.9) to two-input two-output transfer matrices. We can easily show that (7.104) is always
controllable and is called a controllable-form realization. Furthermore, the controllability
indices are µ1 = 4 and µ2 = 2. As in (7.9), the state equation in (7.104) is observable if
and only if D(s) and N(s) are right coprime. For its proof, see Reference [6, p. 282]. Because
we start with a coprime fraction N(s)D−1(s), the realization in (7.104) is observable as well. In
conclusion, the realization in (7.104) is controllable and observable and its dimension equals
µ1 + µ2 and, following Theorem 7.M4, the degree of Ĝ(s). This establishes the second part
of Theorem 7.M2, namely, a state equation is minimal or controllable and observable if and
only if its dimension equals the degree of its transfer matrix.

Example 7.8 Consider the transfer matrix in Example 7.6. We gave there a minimal realiza-
tion that is obtained by reducing the nonminimal realization in (4.39). Now we will develop
directly a minimal realization by using a coprime fraction. We first write the transfer matrix as

224 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

Ĝ(s) =



4s − 10

2s + 1

3

s + 2
1

(2s + 1)(s + 2)

s + 1

(s + 2)2


 =: Ĝ(∞) + Ĝsp(s)

=
[

2 0

0 0

]
+

 − 12

2s + 1

3

s + 2
1

(2s + 1)(s + 2)

s + 1

(s + 2)2




As in Example 7.7, we can find a right coprime fraction for the strictly proper part of Ĝ(s) as

Ĝsp(s) =
[−6s − 12 −9

0.5 1

] [
s2 + 2.5s + 1 2s + 1

0 s + 2

]−1

Note that its denominator matrix is the same as the one in (7.86). Clearly we have µ1 = 2 and
µ2 = 1. We define

H(s) =
[

s2 0

0 s

]
L(s) =


 s 0

1 0

0 1




Then we have

D(s) =
[

1 2

0 1

]
H(s) +

[
2.5 1 1

0 0 2

]
L(s)

and

N(s) =
[−6 −12 −9

0 0.5 1

]
L(s)

We compute

D−1
hc =

[
1 2

0 1

]−1

=
[

1 −2

0 1

]

and

D−1
hc Dlc =

[
1 −2

0 1

] [
2.5 1 1

0 0 2

]
=
[

2.5 1 −3

0 0 2

]

Thus a minimal realization of Ĝ(s) is

ẋ =




−2.5 −1
... 3

1 0
... 0

· · · · · · · · · · · ·
0 0

... −2


 x +




1 −2

0 0

· · · · · ·
0 1


u

y =
[

−6 −12
... −9

0 0.5
... 1

]
x +

[
2 0

0 0

]
u

(7.105)

7.10 Realizations from Matrix Markov Parameters 225

This A-matrix has two companion-form diagonal blocks; one with order 2 and the other
order 1. This three-dimensional realization is a minimal realization and is in controllable
canonical form.

Dual to the preceding minimal realization, if we use Ĝ(s) = D̄−1(s)N̄(s), where D̄(s)

and N̄(s) are left coprime and D̄(s) is in row echelon form with row degrees {νi, i =
1, 2, . . . , q}, then we can obtain an observable-form realization with observability indices
{νi, i = 1, 2, . . . , q}. This will not be repeated.

We summarize the main results in the following. As in the SISO case, an n-dimensional
multivariable state equation is controllable and observable if its transfer matrix has degree n. If
a proper transfer matrix is expressed as a right coprime fraction with column reducedness, then
the realization obtained by using the preceding procedure will automatically be controllable
and observable.

Let (A, B, C, D) be a minimal realization of Ĝ(s) and let Ĝ(s) = D̄−1(s)N̄(s) =
N(s)D−1(s) be coprime fractions; D̄(s) is row reduced, and D(s) is column reduced. Then
we have

C(sI − A)−1B + D = N(s)D−1(s) = D̄−1(s)N̄(s)

which implies

1

det(sI − A)
C[Adj(sI − A)]B + D = 1

det D(s)
N(s)[Adj(D(s))]

= 1

det D̄(s)
[Adj(D̄(s))]N̄(s)

Because the three polynomials det (sI − A), det D(s), and det D̄(s) have the same degree,
they must denote the same polynomial except possibly different leading coefficients. Thus we
conclude the following:

● deg Ĝ(s) = deg det D(s) = deg det D̄(s) = dim A.

● The characteristic polynomial of Ĝ(s) = k1 det D(s) = k2 det D̄(s) = k3 det (sI − A) for
some nonzero constant ki .

● The set of column degrees of D(s) equals the set of controllability indices of (A, B).

● The set of row degrees of D̄(s) equals the set of observability indices of (A, C).

We see that coprime fractions and controllable and observable state equations contain essen-
tially the same information. Thus either description can be used in analysis and design.

7.10 Realizations from Matrix Markov Parameters

Consider a q × p strictly proper rational matrix Ĝ(s). We expand it as

Ĝ(s) = H(1)s−1 + H(2)s−2 + H(3)s−3 + · · · (7.106)

226 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

where H(m) are q ×p constant matrices. Let r be the degree of the least common denominator
of all entries of Ĝ(s). We form

T =




H(1) H(2) H(3) · · · H(r)

H(2) H(3) H(4) · · · H(r + 1)

H(3) H(4) H(5) · · · H(r + 2)

...
...

...
. . .

...

H(r) H(r + 1) H(r + 2) · · · H(2r − 1)


 (7.107)

T̃ =




H(2) H(3) H(4) · · · H(r + 1)

H(3) H(4) H(5) · · · H(r + 2)

H(4) H(5) H(6) · · · H(r + 3)

...
...

...
. . .

...

H(r + 1) H(r + 2) H(r + 3) · · · H(2r)


 (7.108)

Note that T and T̃ have r block columns and r block rows and, consequently, have dimension
rq × rp. As in (7.53) and (7.55), we have

T = OC and T̃ = OAC (7.109)

where O and C are some observability and controllability matrices of order rq ×n and n× rp,
respectively. Note that n is not yet determined. Because r equals the degree of the minimal
polynomial of any minimal realization of Ĝ(s) and because of (6.16) and (6.34), the matrix T
is sufficiently large to have rank n. This is stated as a theorem.

� Theorem 7.M7

A strictly proper rational matrix Ĝ(s) has degree n if and only if the matrix T in (7.107) has rank n.

The singular-value decomposition method discussed in Section 7.5 can be applied to the
matrix case with some modification. This is discussed in the following. First we use singular-
value decomposition to express T as

T = K
[

� 0
0 0

]
L′ (7.110)

where K and L are orthogonal matrices and � = diag(λ1, λ2, . . . , λn), where λi are the positive
square roots of the positive eigenvalues of T′T. Clearly n is the rank of T. Let K̄ denote the
first n columns of K and L̄′ denote the first n rows of L′. Then we can write T as

T = K̄�L̄′ = K̄�1/2�1/2L̄′ =: OC (7.111)

where

O = K̄�1/2 and C = �1/2L̄′

Note that O is nq × n and C is n × np. They are not square and their inverses are not defined.
However, their pseudoinverses are defined. The pseudoinverse of O is, as defined in (7.69),

7.11 Concluding Remarks 227

O+ = [(�1/2)′K̄′K̄�1/2]−1(�1/2)′K̄′

Because K is orthogonal, we have K̄′K̄ = I and because �1/2 is symmetric, the pseudoinverse
O+ reduces to

O+ = �−1/2K̄′ (7.112)

Similarly, we have

C+ = L̄�−1/2 (7.113)

Then, as in (7.64) through (7.66), the triplet

A = O+T̃C+ (7.114)

B = first p columns of C (7.115)

C = first q rows of O (7.116)

is a minimal realization of Ĝ(s). This realization has the property

O′O = �1/2K̄′K̄�1/2 = �

and, using L̄′L̄ = I,

CC ′ = �1/2L̄′L̄�1/2 = �

Thus the realization is a balanced realization. The MATLAB procedure in Example 7.3 can
be applied directly to the matrix case if the function inverse (inv) is replaced by the function
pseudoinverse (pinv). We see once again that the procedure in the scalar case can be extended
directly to the matrix case. We also mention that if we decompose T = OC in (7.111)
differently, we will obtain a different realization. This will not be discussed.

7.11 Concluding Remarks

In addition to a number of minimal realizations, we introduced in this chapter coprime fractions
(right fractions with column reducedness and left fractions with row reducedness). These
fractions can readily be obtained by searching linearly independent vectors of generalized
resultants and then solving monic null vectors of their submatrices. A fundamental result of
this chapter is that controllable and observable state equations are essentially equivalent to
coprime polynomial fractions, denoted as

controllable and observable state equations

�
coprime polynomial fractions

Thus either description can be used to describe a system. We use the former in the next chapter
and the latter in Chapter 9 to carry out various designs.

A great deal more can be said regarding coprime polynomial fractions. For example, it is
possible to show that all coprime fractions are related by unimodular matrices. Controllability

228 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

and observability conditions can also be expressed in terms of coprimeness conditions. See
References [4, 6, 13, 20]. The objectives of this chapter are to discuss a numerical method to
compute coprime fractions and to introduce just enough background to carry out designs in
Chapter 9.

In addition to polynomial fractions, it is possible to express transfer functions as stable
rational function fractions. See References [9, 21]. Stable rational function fractions can be
developed without discussing polynomial fractions; however, polynomial fractions can provide
an efficient way of computing rational fractions. Thus this chapter is also useful in studying
rational fractions.

PROBLEMS
7.1 Given

ĝ(s) = s − 1

(s2 − 1)(s + 2)

find a three-dimensional controllable realization. Check its observability.

7.2 Find a three-dimensional observable realization for the transfer function in Problem 7.1.
Check its controllability.

7.3 Find an uncontrollable and unobservable realization for the transfer function in Problem
7.1. Find also a minimal realization.

7.4 Use the Sylvester resultant to find the degree of the transfer function in Problem 7.1.

7.5 Use the Sylvester resultant to reduce (2s − 1)/(4s2 − 1) to a coprime fraction.

7.6 Form the Sylvester resultant of ĝ(s) = (s +2)/(s2 +2s) by arranging the coefficients of
N(s) and D(s) in descending powers of s and then search linearly independent columns
in order from left to right. Is it true that all D-columns are linearly independent of their
LHS columns? Is it true that the degree of ĝ(s) equals the number of linearly independent
N-columns?

7.7 Consider

ĝ(s) = β1s + β2

s2 + α1s + α2
=:

N(s)

D(s)

and its realization

ẋ =
[−α1 −α2

1 0

]
x +

[
1

0

]
u y = [β1 β2]x

Show that the state equation is observable if and only if the Sylvester resultant of D(s)

and N(s) is nonsingular.

7.8 Repeat Problem 7.7 for a transfer function of degree 3 and its controllable-form realiza-
tion.

7.9 Verify Theorem 7.7 for ĝ(s) = 1/(s + 1)2.

Problems 229

7.10 Use the Markov parameters of ĝ(s) = 1/(s + 1)2 to find an irreducible companion-form
realization.

7.11 Use the Markov parameters of ĝ(s) = 1/(s + 1)2 to find an irreducible balanced-form
realization.

7.12 Show that the two state equations

ẋ =
[

2 1

0 1

]
x +

[
1

0

]
u y = [2 2]x

and

ẋ =
[

2 0

−1 −1

]
x +

[
1

2

]
u y = [2 0]x

are realizations of (2s + 2)/(s2 − s − 2). Are they minimal realizations? Are they
algebraically equivalent?

7.13 Find the characteristic polynomials and degrees of the following proper rational matrices

Ĝ1(s) =



1

s

s + 3

s + 1
1

s + 3

s

s + 1


 Ĝ2(s) =




1

(s + 1)2

1

(s + 1)(s + 2)

1

s + 2

1

(s + 1)(s + 2)




and

Ĝ3(s) =



1

(s + 1)2

s + 3

s + 2

1

s + 5
1

(s + 3)2

s + 1

s + 4

1

s




Note that each entry of Ĝ3(s) has different poles from other entries.

7.14 Use the left fraction

Ĝ(s) =
[

s 1

−s s

]−1 [1

−1

]

to form a generalized resultant as in (7.83), and then search its linearly independent
columns in order from left to right. What is the number of linearly independent N-
columns? What is the degree of Ĝ(s)? Find a right coprime fraction of Ĝ(s). Is the given
left fraction coprime?

7.15 Are all D-columns in the generalized resultant in Problem 7.14 linearly independent of
their LHS columns? Now in forming the generalized resultant, the coefficient matrices of
D(s) and N(s) are arranged in descending powers of s, instead of ascending powers of
s as in Problem 7.14. Is it true that all D-columns are linearly independent of their LHS
columns? Does the degree of Ĝ(s) equal the number of linearly independent N-columns?
Does Theorem 7.M4 hold?

230 MINIMAL REALIZATIONS AND COPRIME FRACTIONS

7.16 Use the right coprime fraction of Ĝ(s) obtained in Problem 7.14 to form a generalized
resultant as in (7.89), search its linearly independent rows in order from top to bottom,
and then find a left coprime fraction of Ĝ(s).

7.17 Find a right coprime fraction of

Ĝ(s) =



s2 + 1

s3

2s + 1

s2

s + 2

s2

2

s




and then a minimal realization.

Chapter

8
State Feedback

and State Estimators

8.1 Introduction

The concepts of controllability and observability were used in the preceding two chapters to
study the internal structure of systems and to establish the relationships between the internal
and external descriptions. Now we discuss their implications in the design of feedback control
systems.

Most control systems can be formulated as shown in Fig. 8.1, in which the plant and
the reference signal r(t) are given. The input u(t) of the plant is called the actuating signal
or control signal. The output y(t) of the plant is called the plant output or controlled signal.
The problem is to design an overall system so that the plant output will follow as closely as
possible the reference signal r(t). There are two types of control. If the actuating signal u(t)

depends only on the reference signal and is independent of the plant output, the control is
called an open-loop control. If the actuating signal depends on both the reference signal and
the plant output, the control is called a closed-loop or feedback control. The open-loop control
is, in general, not satisfactory if there are plant parameter variations and/or there are noise
and disturbance around the system. A properly designed feedback system, on the other hand,

Figure 8.1 Design of control systems.

Plant
r u y

231

232 STATE FEEDBACK AND STATE ESTIMATORS

can reduce the effect of parameter variations and suppress noise and disturbance. Therefore
feedback control is more widely used in practice.

This chapter studies designs using state-space equations. Designs using coprime fractions
will be studied in the next chapter. We study first single-variable systems and then multivariable
systems. We study only linear time-invariant systems.

8.2 State Feedback

Consider the n-dimensional single-variable state equation

ẋ = Ax + bu

y = cx
(8.1)

where we have assumed d = 0 to simplify discussion. In state feedback, the input u is given by

u = r − kx = r − [k1 k2 · · · kn]x = r −
n∑

i=1

kixi (8.2)

as shown in Fig. 8.2. Each feedback gain ki is a real constant. This is called the constant gain
negative state feedback or, simply, state feedback. Substituting (8.2) into (8.1) yields

ẋ = (A − bk)x + br

y = cx
(8.3)

� Theorem 8.1

The pair (A − bk, b), for any 1 × n real constant vector k, is controllable if and only if (A, b) is
controllable.

Proof: We show the theorem for n = 4. Define

C = [b Ab A2b A3b]

and

Cf = [b (A − bk)b (A − bk)2b (A − bk)3b]

They are the controllability matrices of (8.1) and (8.3). It is straightforward to verify

Figure 8.2 State feedback.

8.2 State Feedback 233

Cf = C




1 −kb −k(A − bk)b −k(A − bk)2b
0 1 −kb −k(A − bk)b
0 0 1 −kb
0 0 0 1


 (8.4)

Note that k is 1 × n and b is n × 1. Thus kb is scalar; so is every entry in the rightmost
matrix in (8.4). Because the rightmost matrix is nonsingular for any k, the rank of Cf

equals the rank of C . Thus (8.3) is controllable if and only if (8.1) is controllable.
This theorem can also be established directly from the definition of controllability.

Let x0 and x1 be two arbitrary states. If (8.1) is controllable, there exists an input u1 that
transfers x0 to x1 in a finite time. Now if we choose r1 = u1 + kx, then the input r1 of the
state feedback system will transfer x0 to x1. Thus we conclude that if (8.1) is controllable,
so is (8.3).

We see from Fig. 8.2 that the input r does not control the state x directly; it generates
u to control x. Therefore, if u cannot control x, neither can r . This establishes once again
the theorem. Q.E.D.

Although the controllability property is invariant under any state feedback, the observ-
ability property is not. This is demonstrated by the example that follows.

Example 8.1 Consider the state equation

ẋ =
[

1 2

3 1

]
x +

[
0

1

]
u

y = [1 2]x

The state equation can readily be shown to be controllable and observable. Now we introduce
the state feedback

u = r − [3 1]x

Then the state feedback equation becomes

ẋ =
[

1 2

0 0

]
x +

[
0

1

]
r

y = [1 2]x

Its controllability matrix is

Cf =
[

0 2

1 0

]

which is nonsingular. Thus the state feedback equation is controllable. Its observability matrix is

Of =
[

1 2

1 2

]

which is singular. Thus the state feedback equation is not observable. The reason that the
observability property may not be preserved in state feedback will be given later.

234 STATE FEEDBACK AND STATE ESTIMATORS

We use an example to discuss what can be achieved by state feedback.

Example 8.2 Consider a plant described by

ẋ =
[

1 3

3 1

]
x +

[
1

0

]
u

The A-matrix has characteristic polynomial

�(s) = (s − 1)2 − 9 = s2 − 2s − 8 = (s − 4)(s + 2)

and, consequently, eigenvalues 4 and −2. It is unstable. Let us introduce state feedback
u = r − [k1 k2]x. Then the state feedback system is described by

ẋ =
([

1 3

3 1

]
−
[

k1 k2

0 0

])
x +

[
1

0

]
r

=
[

1 − k1 3 − k2

3 1

]
x +

[
1

0

]
r

This new A-matrix has characteristic polynomial

�f (s) = (s − 1 + k1)(s − 1) − 3(3 − k2)

= s2 + (k1 − 2)s + (3k2 − k1 − 8)

It is clear that the roots of �f (s) or, equivalently, the eigenvalues of the state feedback
system can be placed in any positions by selecting appropriate k1 and k2. For example, if
the two eigenvalues are to be placed at −1 ± j2, then the desired characteristic polynomial is
(s + 1 + j2)(s + 1 − j2) = s2 + 2s + 5. Equating k1 − 2 = 2 and 3k2 − k1 − 8 = 5 yields
k1 = 4 and k2 = 17/3. Thus the state feedback gain [4 17/3] will shift the eigenvalues from
4, −2 to −1 ± j2.

This example shows that state feedback can be used to place eigenvalues in any positions.
Moreover the feedback gain can be computed by direct substitution. This approach, however,
will become very involved for three- or higher-dimensional state equations. More seriously,
the approach will not reveal how the controllability condition comes into the design. Therefore
a more systematic approach is desirable. Before proceeding, we need the following theorem.
We state the theorem for n = 4; the theorem, however, holds for every positive integer n.

� Theorem 8.2

Consider the state equation in (8.1) with n = 4 and the characteristic polynomial

�(s) = det (sI − A) = s4 + α1s
3 + α2s

2 + α3s + α4 (8.5)

If (8.1) is controllable, then it can be transformed by the transformation x̄ = Px with

Q := P−1 = [b Ab A2b A3b]




1 α1 α2 α3

0 1 α1 α2

0 0 1 α1

0 0 0 1


 (8.6)

8.2 State Feedback 235

into the controllable canonical form

˙̄x = Āx̄ + b̄u =




−α1 −α2 −α3 −α4

1 0 0 0

0 1 0 0

0 0 1 0


 x̄ +




1

0

0

0


 u

y = c̄x̄ = [β1 β2 β3 β4]x̄

(8.7)

Furthermore, the transfer function of (8.1) with n = 4 equals

ĝ(s) = β1s
3 + β2s

2 + β3s + β4

s4 + α1s3 + α2s2 + α3s + α4
(8.8)

Proof: Let C and C̄ be the controllability matrices of (8.1) and (8.7). In the SISO case,
both C and C̄ are square. If (8.1) is controllable or C is nonsingular, so is C̄ . And they
are related by C̄ = PC (Theorem 6.2 and Equation (6.20)). Thus we have

P = C̄C−1 or Q := P−1 = CC̄−1

The controllability matrix C̄ of (8.7) was computed in (7.10). Its inverse turns out to be

C̄−1 =




1 α1 α2 α3

0 1 α1 α2

0 0 1 α1

0 0 0 1


 (8.9)

This can be verified by multiplying (8.9) with (7.10) to yield a unit matrix. Note that the
constant term α4 of (8.5) does not appear in (8.9). Substituting (8.9) into Q = CC̄−1 yields
(8.6). As shown in Section 7.2, the state equation in (8.7) is a realization of (8.8). Thus
the transfer function of (8.7) and, consequently, of (8.1) equals (8.8). This establishes the
theorem. Q.E.D.

With this theorem, we are ready to discuss eigenvalue assignment by state feedback.

� Theorem 8.3

If the n-dimensional state equation in (8.1) is controllable, then by state feedback u = r − kx, where
k is a 1 × n real constant vector, the eigenvalues of A − bk can arbitrarily be assigned provided that
complex conjugate eigenvalues are assigned in pairs.

Proof: We again prove the theorem for n = 4. If (8.1) is controllable, it can be transformed
into the controllable canonical form in (8.7). Let Ā and b̄ denote the matrices in (8.7).
Then we have Ā = PAP−1 and b̄ = Pb. Substituting x̄ = Px into the state feedback
yields

u = r − kx = r − kP−1x̄ =: r − k̄x̄

where k̄ := kP−1. Because Ā − b̄k̄ = P(A − bk)P−1, A − bk and Ā − b̄k̄ have the same
set of eigenvalues. From any set of desired eigenvalues, we can readily form

236 STATE FEEDBACK AND STATE ESTIMATORS

�f (s) = s4 + ᾱ1s
3 + ᾱ2s

2 + ᾱ3s + ᾱ4 (8.10)

If k̄ is chosen as

k̄ = [ᾱ1 − α1 ᾱ2−, α2 ᾱ3 − α3 ᾱ4 − α4] (8.11)

the state feedback equation becomes

˙̄x = (Ā − b̄k̄)x̄ + b̄r =




−ᾱ1 −ᾱ2 −ᾱ3 −ᾱ4

1 0 0 0

0 1 0 0

0 0 1 0


 x̄ +




1

0

0

0


 r

y = [β1 β2 β3 β4]x̄

(8.12)

Because of the companion form, the characteristic polynomial of (Ā − b̄k̄) and, conse-
quently, of (A − bk) equals (8.10). Thus the state feedback equation has the set of desired
eigenvalues. The feedback gain k can be computed from

k = k̄P = k̄C̄C−1 (8.13)

with k̄ in (8.11), C̄−1 in (8.9), and C = [b Ab A2b A3b]. Q.E.D.

We give an alternative derivation of the formula in (8.11). We compute

�f (s) = det (sI − A + bk) = det
(
(sI − A)[I + (sI − A)−1bk]

)
= det (sI − A)det [I + (sI − A)−1bk]

which becomes, using (8.5) and (3.64),

�f (s) = �(s)[1 + k(sI − A)−1b]

Thus we have

�f (s) − �(s) = �(s)k(sI − A)−1b = �(s)k̄(sI − Ā)−1b̄ (8.14)

Let z be the output of the feedback gain shown in Fig. 8.2 and let k̄ = [k̄1 k̄2 k̄3 k̄4]. Because
the transfer function from u to y in Fig. 8.2 equals

c̄(sI − Ā)−1b̄ = β1s
3 + β2s

2 + β3s + β4

�(s)

the transfer function from u to z should equal

k̄(sI − Ā)−1b̄ = k̄1s
3 + k̄2s

2 + k̄3s + k̄4

�(s)
(8.15)

Substituting (8.15), (8.5), and (8.10) into (8.14) yields

(ᾱ1 − α1)s
3 + (ᾱ2 − α2)s

2 + (ᾱ3 − α3)s + (ᾱ4 − α4) = k̄1s
3 + k̄2s

2 + k̄3s + k̄4

This yields (8.11).

8.2 State Feedback 237

Feedback transfer function Consider a plant described by (A, b, c). If (A, b) is controllable,
(A, b, c) can be transformed into the controllable form in (8.7) and its transfer function can
then be read out as, for n = 4,

ĝ(s) = c(sI − A)−1b = β1s
3 + β2s

2 + β3s + β4

s4 + α1s3 + α2s2 + α3s + α4
(8.16)

After state feedback, the state equation becomes (A − bk, b, c) and is still of the controllable
canonical form as shown in (8.12). Thus the feedback transfer function from r to y is

ĝf (s) = c(sI − A + bk)−1b = β1s
3 + β2s

2 + β3s + β4

s4 + ᾱ1s3 + ᾱ2s2 + ᾱ3s + ᾱ4
(8.17)

We see that the numerators of (8.16) and (8.17) are the same. In other words, state feedback
does not affect the zeros of the plant transfer function. This is actually a general property of
feedback: feedback can shift the poles of a plant but has no effect on the zeros. This can be used
to explain hy a state feedback may alter the observability property of a state equation. If one or
more poles are shifted to coincide with zeros of ĝ(s), then the numerator and denominator of
ĝf (s) in (8.17) are not coprime. Thus the state equation in (8.12) and, equivalently, (A−bk, c)
are not observable (Theorem 7.1).

Example 8.3 Consider the inverted pendulum studied in Example 6.2. Its state equation is,
as derived in (6.11),

ẋ =




0 1 0 0

0 0 −1 0

0 0 0 1

0 0 5 0


 x +




0

1

0

−2


 u

y = [1 0 0 0]x

(8.18)

It is controllable; thus its eigenvalues can be assigned arbitrarily. Because the A-matrix is block
triangular, its characteristic polynomial can be obtained by inspection as

�(s) = s2(s2 − 5) = s4 + 0 · s3 − 5s2 + 0 · s + 0

First we compute P that will transform (8.18) into the controllable canonical form. Using (8.6),
we have

P−1 = CC̄−1 =




0 1 0 2

1 0 2 0

0 −2 0 −10

−2 0 −10 0






1 0 −5 0

0 1 0 −5

0 0 1 0

0 0 0 1




=




0 1 0 −3

1 0 −3 0

0 −2 0 0

−2 0 0 0




Its inverse is

238 STATE FEEDBACK AND STATE ESTIMATORS

P =




0 0 0 − 1
2

0 0 − 1
2 0

0 − 1
3 0 − 1

6

− 1
3 0 − 1

6 0




Let the desired eigenvalues be −1.5 ± 0.5j and −1 ± j . Then we have

�f (s) = (s + 1.5 − 0.5j)(s + 1.5 + 0.5j)(s + 1 − j)(s + 1 + j)

= s4 + 5s3 + 10.5s2 + 11s + 5

Thus we have, using (8.11),

k̄ = [5 − 0 10.5 + 5 11 − 0 5 − 0] = [5 15.5 11 5]

and

k = k̄P = [− 5
3 − 11

3 − 103
12 − 13

3] (8.19)

This state feedback gain will shift the eigenvalues of the plant from {0, 0, ±j
√

5} to
{−1.5 ± 0.5j, −1 ± j}.

The MATLAB function place computes state feedback gains for eigenvalue placement
or assignment. For the example, we type

a=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0];b=[0;1;0;-2];

p=[-1.5+0.5j -1.5-0.5j -1+j -1-j];

k=place(a,b,p)

which yields [−1.6667 − 3.6667 − 8.5833 − 4.3333]. This is the gain in (8.19).
One may wonder at this point how to select a set of desired eigenvalues. This depends

on the performance criteria, such as rise time, settling time, and overshoot, used in the design.
Because the response of a system depends not only on poles but also on zeros, the zeros of the
plant will also affect the selection. In addition, most physical systems will saturate or burn out if
the magnitude of the actuating signal is very large. This will again affect the selection of desired
poles. As a guide, we may place all eigenvalues inside the region denoted by C in Fig. 8.3(a).
The region is bounded on the right by a vertical line. The larger the distance of the vertical line
from the imaginary axis, the faster the response. The region is also bounded by two straight
lines emanating from the origin with angle θ . The larger the angle, the larger the overshoot. See
Reference [7]. If we place all eigenvalues at one point or group them in a very small region,
then usually the response will be slow and the actuating signal will be large. Therefore it is
better to place all eigenvalues evenly around a circle with radius r inside the sector as shown.
The larger the radius, the faster the response; however, the actuating signal will also be larger.
Furthermore, the bandwidth of the feedback system will be larger and the resulting system
will be more susceptible to noise. Therefore a final selection may involve compromises among
many conflicting requirements. One way to proceed is by computer simulation. Another way
is to find the state feedback gain k to minimize the quadratic performance index

J =
∫ ∞

0
[x′(t)Qx(t) + u′(t)Ru(t)] dt

8.2 State Feedback 239

Im s

r

θ

0
C

σ

Re s

Im z

−1

e−σ

1

1

Re z

(b)(a)

Figure 8.3 Desired eigenvalue location.

See Reference [1]. However, selecting Q and R requires trial and error. In conclusion, how to
select a set of desired eigenvalues is not a simple problem.

We mention that Theorems 8.1 through 8.3—in fact, all theorems to be introduced later
in this chapter—apply to the discrete-time case without any modification. The only difference
is that the region in Fig. 8.3(a) must be replaced by the one in Fig. 8.3(b), which is obtained
by the transformation z = es .

8.2.1 Solving the Lyapunov Equation

This subsection discusses a different method of computing state feedback gain for eigenvalue
assignment. The method, however, has the restriction that the selected eigenvalues cannot
contain any eigenvalues of A.

� Procedure 8.1

Consider controllable (A, b), where A is n×n and b is n× 1. Find a 1 ×n real k such that (A − bk)
has any set of desired eigenvalues that contains no eigenvalues of A.

1. Select an n×n matrix F that has the set of desired eigenvalues. The form of F can be chosen arbitrarily
and will be discussed later.

2. Select an arbitrary 1 × n vector k̄ such that (F, k̄) is observable.

3. Solve the unique T in the Lyapunov equation AT − TF = bk̄.

4. Compute the feedback gain k = k̄T−1.

We justify first the procedure. If T is nonsingular, then k̄ = kT and the Lyapunov equation
AT − TF = bk̄ implies

(A − bk)T = TF or A − bk = TFT−1

Thus (A−bk) and F are similar and have the same set of eigenvalues. Thus the eigenvalues of
(A − bk) can be assigned arbitrarily except those of A. As discussed in Section 3.7, if A and

240 STATE FEEDBACK AND STATE ESTIMATORS

F have no eigenvalues in common, then a solution T exists in AT − TF = bk̄ for any k̄ and
is unique. If A and F have common eigenvalues, a solution T may or may not exist depending
on bk̄. To remove this uncertainty, we require A and F to have no eigenvalues in common.
What remains to be proved is the nonsingularity of T.

� Theorem 8.4

If A and F have no eigenvalues in common, then the unique solution T of AT−TF = bk̄ is nonsingular
if and only if (A, b) is controllable and (F, k̄) is observable.

Proof: We prove the theorem for n = 4. Let the characteristic polynomial of A be

�(s) = s4 + α1s
3 + α2s

2 + α3s + α4 (8.20)

Then we have

�(A) = A4 + α1A3 + α2A2 + α3A + α4I = 0

(Cayley–Hamilton theorem). Let us consider

�(F) := F4 + α1F3 + α2F2 + α3F + α4I (8.21)

If λ̄i is an eigenvalue of F, then �(λ̄i) is an eigenvalue of �(F) (Problem 3.19). Because
A and F have no eigenvalues in common, we have �(λ̄i) �= 0 for all eigenvalues of F.
Because the determinant of a matrix equals the product of all its eigenvalues, we have

det �(F) =
∏

i

�(λ̄i) �= 0

Thus �(F) is nonsingular.
Substituting AT = TF + bk̄ into A2T − AF2 yields

A2T − TF2 = A(TF + bk̄) − TF2 = Abk̄ + (AT − TF)F

= Abk̄ + bk̄F

Proceeding forward, we can obtain the following set of equations:

IT − TI = 0

AT − TF = bk̄

A2T − TF2 = Abk̄ + bk̄F

A3T − TF3 = A2bk̄ + Abk̄F + bk̄F2

A4T − TF4 = A3bk̄ + A2bk̄F + Abk̄F2 + bk̄F3

We multiply the first equation by α4, the second equation by α3, the third equation by α2,
the fourth equation by α1, and the last equation by 1, and then sum them up. After some
manipulation, we finally obtain

�(A)T − T�(F) = −T�(F)

8.2 State Feedback 241

= [b Ab A2b A3b]




α3 α2 α1 1

α2 α1 1 0

α1 1 0 0

1 0 0 0






k̄
k̄F
k̄F2

k̄F3


 (8.22)

where we have used �(A) = 0. If (A, b) is controllable and (F, k̄) is observable, then all
three matrices after the last equality are nonsingular. Thus (8.22) and the nonsingularity of
�(F) imply that T is nonsingular. If (A, b) is uncontrollable and/or (F, k̄) is unobservable,
then the product of the three matrices is singular. Therefore T is singular. This establishes
the theorem. Q.E.D.

We now discuss the selection of F and k̄. Given a set of desired eigenvalues, there are
infinitely many F that have the set of eigenvalues. If we form a polynomial from the set, we
can use its coefficients to form a companion-form matrix F as shown in (7.14). For this F,
we can select k̄ as [1 0 · · · 0] and (F, k̄) is observable. If the desired eigenvalues are all
distinct, we can also use the modal form discussed in Section 4.3.1. For example, if n = 5,
and if the five distinct desired eigenvalues are selected as λ1, α1 ± jβ1, and α2 ± jβ2, then we
can select F as

F =




λ1 0 0 0 0

0 α1 β1 0 0

0 −β1 α1 0 0

0 0 0 α2 β2

0 0 0 −β2 α2


 (8.23)

It is a block-diagonal matrix. For this F, if k̄ has at least one nonzero entry associated with
each diagonal block such as k̄ = [1 1 0 1 0], k̄ = [1 1 0 0 1], or k̄ = [1 1 1 1 1], then (F, k̄) is
observable (Problem 6.16). Thus the first two steps of Procedure 8.1 are very simple. Once F
and k̄ are selected, we may use the MATLAB function lyap to solve the Lyapunov equation
in Step 3. Thus Procedure 8.1 is easy to carry out as the next example illustrates.

Example 8.4 Consider the inverted pendulum studied in Example 8.3. The plant state
equation is given in (8.18) and the desired eigenvalues were chosen as −1±j and −1.5±0.5j .
We select F in modal form as

F =




−1 1 0 0

−1 −1 0 0

0 0 −1.5 0.5

0 0 −0.5 −1.5




and k̄ = [1 0 1 0]. We type

a=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0];b=[0;1;0;-2];

f=[-1 1 0 0;-1 -1 0 0;0 0 -1.5 0.5;0 0 -0.5 -1.5];

kb=[1 0 1 0];t=lyap(a,b,-b*kb);

k=kb*inv(t)

242 STATE FEEDBACK AND STATE ESTIMATORS

The answer is [−1.6667 −3.6667 −8.5833 −4.3333], which is the same as the one obtained
by using function place. If we use a different k̄ = [1 1 1 1], we will obtain the same k. Note
that the feedback gain is unique for the SISO case.

8.3 Regulation and Tracking

Consider the state feedback system shown in Fig. 8.2. Suppose the reference signal r is zero,
and the response of the system is caused by some nonzero initial conditions. The problem is
to find a state feedback gain so that the response will die out at a desired rate. This is called a
regulator problem. This problem may arise when an aircraft is cruising at a fixed altitude H0.
Now, because of turbulance or other factors, the aircraft may deviate from the desired altitude.
Bringing the deviation to zero is a regulator problem. This problem also arises in maintaining
the liquid level in Fig. 2.14 at equilibrium.

A closely related problem is the tracking problem. Suppose the reference signal r is a
constant or r(t) = a, for t ≥ 0. The problem is to design an overall system so that y(t)

approaches r(t) = a as t approaches infinity. This is called asymptotic tracking of a step
reference input. It is clear that if r(t) = a = 0, then the tracking problem reduces to the
regulator problem. Why do we then study these two problems separately? Indeed, if the same
state equation is valid for all r , designing a system to track asymptotically a step reference input
will automatically achieve regulation. However, a linear state equation is often obtained by
shifting to an operating point and linearization, and the equation is valid only for r very small
or zero; thus the study of the regulator problem is needed. We mention that a step reference
input can be set by the position of a potentiometer and is therefore often referred to as set point.
Maintaining a chamber at a desired temperature is often said to be regulating the temperature; it
is actually tracking the desired temperature. Therefore no sharp distinction is made in practice
between regulation and tracking a step reference input. Tracking a nonconstant reference signal
is called a servomechanism problem and is a much more difficult problem.

Consider a plant described by (A, b, c). If all eigenvalues of A lie inside the sector shown
in Fig. 8.3, then the response caused by any initial conditions will decay rapidly to zero and
no state feedback is needed. If A is stable but some eigenvalues are outside the sector, then
the decay may be slow or too oscillatory. If A is unstable, then the response excited by any
nonzero initial conditions will grow unbounded. In these situations, we may introduce state
feedback to improve the behavior of the system. Let u = r − kx. Then the state feedback
equation becomes (A − bk, b, c) and the response caused by x(0) is

y(t) = ce(A−bk)tx(0)

If all eigenvalues of (A − bk) lie inside the sector in Fig. 8.3(a), then the output will decay
rapidly to zero. Thus regulation can easily be achieved by introducing state feedback.

The tracking problem is slightly more complex. In general, in addition to state feedback,
we need a feedforward gain p as

u(t) = pr(t) − kx

Then the transfer function from r to y differs from the one in (8.17) only by the feedforward
gain p. Thus we have

8.3 Regulation and Tracking 243

ĝf (s) = ŷ(s)

r̂(s)
= p

β1s
3 + β2s

2 + β3s + β4

s4 + ᾱ1s3 + ᾱ2s2 + ᾱ3s + ᾱ4
(8.24)

If (A, b) is controllable, all eigenvalues of (A − bk) or, equivalently, all poles of ĝf (s) can
be assigned arbitrarily, in particular, assigned to lie inside the sector in Fig. 8.3(a). Under this
assumption, if the reference input is a step function with magnitude a, then the output y(t)

will approach the constant ĝf (0) · a as t → ∞ (Theorem 5.2). Thus in order for y(t) to track
asymptotically any step reference input, we need

1 = ĝf (0) = p
β4

ᾱ4
or p = ᾱ4

β4
(8.25)

which requires β4 �= 0. From (8.16) and (8.17), we see that β4 is the numerator constant term
of the plant transfer function. Thus β4 �= 0 if and only if the plant transfer function ĝ(s) has no
zero at s = 0. In conclusion, if ĝ(s) has one or more zeros at s = 0, tracking is not possible.
If ĝ(s) has no zero at s = 0, we introduce a feedforward gain as in (8.25). Then the resulting
system will track asymptotically any step reference input.

We summarize the preceding discussion. Given (A, b, c); if (A, b) is controllable, we
may introduce state feedback to place the eigenvalues of (A−bk) in any desired positions and
the resulting system will achieve regulation. If (A, b) is controllable and if c(sI − A)−1b has
no zero at s = 0, then after state feedback, we may introduce a feedforward gain as in (8.25).
Then the resulting system can track asymptotically any step reference input.

8.3.1 Robust Tracking and Disturbance Rejection1

The state equation and transfer function developed to describe a plant may change due to
change of load, environment, or aging. Thus plant parameter variations often occur in practice.
The equation used in the design is often called the nominal equation. The feedforward gain
p in (8.25), computed for the nominal plant transfer function, may not yield ĝf (0) = 1 for
nonnominal plant transfer functions. Then the output will not track asymptotically any step
reference input. Such a tracking is said to be nonrobust.

In this subsection we discuss a different design that can achieve robust tracking and
disturbance rejection. Consider a plant described by (8.1). We now assume that a constant
disturbance w with unknown magnitude enters at the plant input as shown in Fig. 8.4(a). Then
the state equation must be modified as

ẋ = Ax + bu + bw

y = cx
(8.26)

The problem is to design an overall system so that the output y(t) will track asymptotically
any step reference input even with the presence of a disturbance w(t) and with plant parameter
variations. This is called robust tracking and disturbance rejection. In order to achieve this
design, in addition to introducing state feedback, we will introduce an integrator and a unity
feedback from the output as shown in Fig. 8.4(a). Let the output of the integrator be denoted by

1. This section may be skipped without loss of continuity.

244 STATE FEEDBACK AND STATE ESTIMATORS

Figure 8.4 (a) State feedback with internal model. (b) Interchange of two summers. (c) Transfer-
function block diagram.

xa(t), an augmented state variable. Then the system has the augmented state vector [x′ xa]′.
From Fig. 8.4(a), we have

ẋa = r − y = r − cx (8.27)

u = [k ka]

[
x
xa

]
(8.28)

For convenience, the state is fed back positively to u as shown. Substituting these into (8.26)
yields [

ẋ
ẋa

]
=
[

A + bk bka

−c 0

] [
x
xa

]
+
[

0
1

]
r +

[
b
0

]
w

y = [c 0]

[
x
xa

] (8.29)

This describes the system in Fig. 8.4(a).

� Theorem 8.5

If (A, b) is controllable and if ĝ(s) = c(sI − A)−1b has no zero at s = 0, then all eigenvalues of the
A-matrix in (8.29) can be assigned arbitrarily by selecting a feedback gain [k ka].

Proof: We show the theorem for n = 4. We assume that A, b, and c have been transformed
into the controllable canonical form in (8.7) and its transfer function equals (8.8). Then
the plant transfer function has no zero at s = 0 if and only if β4 �= 0. We now show that
the pair

8.3 Regulation and Tracking 245

[
A 0
−c 0

] [
b
0

]
(8.30)

is controllable if and only if β4 �= 0. Note that we have assumed n = 4; thus the dimension
of (8.30) is five because of the additional augmented state variable xa . The controllability
matrix of (8.30) is[

b Ab A2b A3b A4b
0 −cb −cAb −cA2b −cA3b

]

=




1 −α1 α2
1 − α2 −α1(α

2
1 − α2) + α2α1 − α3 a15

0 1 −α1 α2
1 − α2 a25

0 0 1 −α1 a35

0 0 0 1 a45

0 −β1 β1α1 − β2 −β1(α
2
1 − α2) + β2α1 − β3 a55




where the last column is not written out to save space. The rank of a matrix will not change
by elementary operations. Adding the second row multiplied by β1 to the last row, and
adding the third row multiplied by β2 to the last row, and adding the fourth row multiplied
by β3 to the last row, we obtain



1 −α1 α2
1 − α2 −α1(α

2
1 − α2) + α2α1 − α3 a15

0 1 −α1 α2
1 − α2 a25

0 0 1 −α1 a35

0 0 0 1 a45

0 0 0 0 −β4


 (8.31)

Its determinant is −β4. Thus the matrix is nonsingular if and only if β4 �= 0. In conclusion,
if (A, b) is controllable and if ĝ(s) has no zero at s = 0, then the pair in (8.30) is
controllable. It follows from Theorem 8.3 that all eigenvalues of the A-matrix in (8.29)
can be assigned arbitrarily by selecting a feedback gain [k ka]. Q.E.D.

We mention that the controllability of the pair in (8.30) can also be explained from pole–
zero cancellations. If the plant transfer function has a zero at s = 0, then the tandem connection
of the integrator, which has transfer function 1/s, and the plant will involve the pole–zero
cancellation of s and the state equation describing the connection will not be controllable. On
the other hand, if the plant transfer function has no zero at s = 0, then there is no pole–zero
cancellation and the connection will be controllable.

Consider again (8.29). We assume that a set of n + 1 desired stable eigenvalues or,
equivalently, a desired polynomial �f (s) of degree n + 1 has been selected and the feedback
gain [k ka] has been found such that

�f (s) = det

[
sI − A − bk −bka

c s

]
(8.32)

Now we show that the output y will track asymptotically and robustly any step reference input
r(t) = a and reject any step disturbance with unknown magnitude. Instead of establishing
the assertion directly from (8.29), we will develop an equivalent block diagram of Fig. 8.4(a)
and then establish the assertion. First we interchange the two summers between v and ū as

246 STATE FEEDBACK AND STATE ESTIMATORS

shown in Fig. 8.4(b). This is permitted because we have ū = v + kx + w before and after the
interchange. The transfer function from v̄ to y is

ˆ̄g(s) := N̄(s)

D̄(s)
:= c(sI − A − bk)−1b (8.33)

with D̄(s) = det (sI − A − bk). Thus Fig. 8.4(a) can be redrawn as shown in Fig. 8.4(c). We
next establish the relationship between �f (s) in (8.32) and ˆ̄g(s) in (8.33). It is straightforward
to verify the following equality:[

I 0
−c(sI − A − bk)−1 1

] [
sI − A − bk −bka

c s

]

=
[

sI − A − bk −bka

0 s + c(sI − A − bk)−1bka

]

Taking its determinants and using (8.32) and (8.33), we obtain

1 · �f (s) = D̄(s)

(
s + N̄(s)

D̄(s)
ka

)

which implies

�f (s) = sD̄(s) + kaN̄(s)

This is a key equation.
From Fig. 8.4(c), the transfer function from w to y can readily be computed as

ĝyw =
N̄(s)

D̄(s)

1 + kaN̄(s)

sD̄(s)

= sN̄(s)

sD̄(s) + kaN̄(s)
= sN̄(s)

�f (s)

If the disturbance is w(t) = w̄ for all t ≥ 0, where w̄ is an unknown constant, then ŵ(s) = w̄/s

and the corresponding output is given by

ŷw(s) = sN̄(s)

�f (s)

w̄

s
= w̄N̄(s)

�f (s)
(8.34)

Because the pole s in (8.34) is canceled, all remaining poles of ŷw(s) are stable poles. Therefore
the corresponding time response, for any w̄, will die out as t → ∞. The only condition to
achieve the disturbance rejection is that ŷw(s) has only stable poles. Thus the rejection still
holds, even if there are plant parameter variations and variations in the feedforward gain ka

and feedback gain k, as long as the overall system remains stable. Thus the disturbance is
suppressed at the output both asymptotically and robustly.

The transfer function from r to y is

ĝyr (s) =
ka

s

N̄(s)

D̄(s)

1 + ka

s

N̄(s)

D̄(s)

= kaN̄(s)

sD̄(s) + kaN̄(s)
= kaN̄(s)

�f (s)

8.4 State Estimator 247

We see that

ĝyr (0) = kaN̄(0)

0 · D̄(0) + kaN̄(0)
= kaN̄(0)

kaN̄(0)
= 1 (8.35)

Equation (8.35) holds even when there are parameter perturbations in the plant transfer function
and the gains. Thus asymptotic tracking of any step reference input is robust. Note that this
robust tracking holds even for very large parameter perturbations as long as the overall system
remains stable.

We see that the design is achieved by inserting an integrator as shown in Fig. 8.4. The
integrator is in fact a model of the step reference input and constant disturbance. Thus it is
called the internal model principle. This will be discussed further in the next chapter.

8.3.2 Stabilization

If a state equation is controllable, all eigenvalues can be assigned arbitrarily by introducing
state feedback. We now discuss the case when the state equation is not controllable. Every
uncontrollable state equation can be transformed into[˙̄xc

˙̄xc̄

]
=
[

Āc Ā12

0 Āc̄

] [
x̄c

x̄c̄

]
+
[

b̄c

0

]
u (8.36)

where (Āc, b̄c) is controllable (Theorem 6.6). Because the A-matrix is block triangular, the
eigenvalues of the original A-matrix are the union of the eigenvalues of Āc and Āc̄. If we
introduce the state feedback

u = r − kx = r − k̄x̄ = r − [k̄1 k̄2]

[
x̄c

x̄c̄

]

where we have partitioned k̄ as in x̄, then (8.36) becomes[˙̄xc

˙̄xc̄

]
=
[

Āc − b̄ck̄1 Ā12 − b̄ck̄2

0 Āc̄

] [
x̄c

x̄c̄

]
+
[

b̄c

0

]
r (8.37)

We see that Āc̄ and, consequently, its eigenvalues are not affected by the state feedback. Thus
we conclude that the controllability condition of (A, b) in Theorem 8.3 is not only sufficient
but also necessary to assign all eigenvalues of (A − bk) to any desired positions.

Consider again the state equation in (8.36). If Āc̄ is stable, and if (Āc, b̄c) is controllable,
then (8.36) is said to be stabilizable. We mention that the controllability condition for tracking
and disturbance rejection can be replaced by the weaker condition of stabilizability. But in this
case, we do not have complete control of the rate of tracking and rejection. If the uncontrollable
stable eigenvalues have large imaginary parts or are close to the imaginary axis, then the
tracking and rejection may not be satisfactory.

8.4 State Estimator

We introduced in the preceding sections state feedback under the implicit assumption that all
state variables are available for feedback. This assumption may not hold in practice either

248 STATE FEEDBACK AND STATE ESTIMATORS

because the state variables are not accessible for direct connection or because sensing devices
or transducers are not available or very expensive. In this case, in order to apply state feedback,
we must design a device, called a state estimator or state observer, so that the output of the
device will generate an estimate of the state. In this section, we introduce full-dimensional
state estimators which have the same dimension as the original state equation. We use the
circumflex over a variable to denote an estimate of the variable. For example, x̂ is an estimate
of x and ˆ̄x is an estimate of x̄.

Consider the n-dimensional state equation

ẋ = Ax + bu

y = cx
(8.38)

where A, b, and c are given and the input u(t) and the output y(t) are available to us. The
state x, however, is not available to us. The problem is to estimate x from u and y with the
knowledge of A, b, and c. If we know A and b, we can duplicate the original system as

˙̂x = Ax̂ + bu (8.39)

and as shown in Fig. 8.5. Note that the original system could be an electromechanical system
and the duplicated system could be an op-amp circuit. The duplication will be called an open-
loop estimator. Now if (8.38) and (8.39) have the same initial state, then for any input, we have
x̂(t) = x(t) for all t ≥ 0. Therefore the remaining question is how to find the initial state of
(8.38) and then set the initial state of (8.39) to that state. If (8.38) is observable, its initial state
x(0) can be computed from u and y over any time interval, say, [0, t1]. We can then compute
the state at t2 and set x̂(t2) = x(t2). Then we have x̂(t) = x(t) for all t ≥ t2. Thus if (8.38) is
observable, an open-loop estimator can be used to generate the state vector.

There are, however, two disadvantages in using an open-loop estimator. First, the initial
state must be computed and set each time we use the estimator. This is very inconvenient.
Second, and more seriously, if the matrix A has eigenvalues with positive real parts, then
even for a very small difference between x(t0) and x̂(t0) for some t0, which may be caused by
disturbance or imperfect estimation of the initial state, the difference between x(t) and x̂(t)

will grow with time. Therefore the open-loop estimator is, in general, not satisfactory.
We see from Fig. 8.5 that even though the input and output of (8.38) are available, we

Figure 8.5 Open-loop state estimator.

8.4 State Estimator 249

Figure 8.6 Closed-loop state estimator.

use only the input to drive the open-loop estimator. Now we shall modify the estimator in Fig.
8.5 to the one in Fig. 8.6, in which the output y(t) = cx(t) of (8.38) is compared with cx̂(t).
Their difference, passing through an n × 1 constant gain vector l, is used as a correcting term.
If the difference is zero, no correction is needed. If the difference is nonzero and if the gain l
is properly designed, the difference will drive the estimated state to the actual state. Such an
estimator is called a closed-loop or an asymptotic estimator or, simply, an estimator.

The open-loop estimator in (8.39) is now modified as, following Fig. 8.6,

˙̂x = Ax̂ + bu + l(y − cx̂)

which can be written as

˙̂x = (A − lc)x̂ + bu + ly (8.40)

and is shown in Fig. 8.7. It has two inputs u and y and its output yields an estimated state x̂.
Let us define

e(t) := x(t) − x̂(t)

It is the error between the actual state and the estimated state. Differentiating e and then
substituting (8.38) and (8.40) into it, we obtain

Figure 8.7 Closed-loop state estimator.

250 STATE FEEDBACK AND STATE ESTIMATORS

ė = ẋ − ˙̂x = Ax + bu − (A − lc)x̂ − bu − l(cx)

= (A − lc)x − (A − lc)x̂ = (A − lc)(x − x̂)

or

ė = (A − lc)e (8.41)

This equation governs the estimation error. If all eigenvalues of (A − lc) can be assigned
arbitrarily, then we can control the rate for e(t) to approach zero or, equivalently, for the
estimated state to approach the actual state. For example, if all eigenvalues of (A − lc) have
negative real parts smaller than −σ , then all entries of e will approach zero at rates faster
than e−σ t . Therefore, even if there is a large error between x̂(t0) and x(t0) at initial time t0,
the estimated state will approach the actual state rapidly. Thus there is no need to compute
the initial state of the original state equation. In conclusion, if all eigenvalues of (A − lc) are
properly assigned, a closed-loop estimator is much more desirable than an open-loop estimator.

As in the state feedback, what constitutes the best eigenvalues is not a simple problem.
Probably, they should be placed evenly along a circle inside the sector shown in Fig. 8.3(a). If
an estimator is to be used in state feedback, then the estimator eigenvalues should be faster than
the desired eigenvalues of the state feedback. Again, saturation and noise problems will impose
constraints on the selection. One way to carry out the selection is by computer simulation.

� Theorem 8.O3

Consider the pair (A, c). All eigenvalues of (A − lc) can be assigned arbitrarily by selecting a real
constant vector l if and only if (A, c) is observable.

This theorem can be established directly or indirectly by using the duality theorem. The
pair (A, c) is observable if and only if (A′, c′) is controllable. If (A′, c′) is controllable, all
eigenvalues of (A′ − c′k) can be assigned arbitrarily by selecting a constant gain vector k. The
transpose of (A′ − c′k) is (A − k′c). Thus we have l = k′. In conclusion, the procedure for
computing state feedback gains can be used to compute the gain l in state estimators.

Solving the Lyapunov equation We discuss a different method of designing a state estimator
for the n-dimensional state equation

ẋ = Ax + bu

y = cx
(8.42)

The method is dual to Procedure 8.1 in Section 8.2.1.

� Procedure 8.O1

1. Select an arbitrary n × n stable matrix F that has no eigenvalues in common with those of A.

2. Select an arbitrary n × 1 vector l such that (F, l) is controllable.

3. Solve the unique T in the Lyapunov equation TA − FT = lc. This T is nonsingular following the
dual of Theorem 8.4.

8.4 State Estimator 251

4. Then the state equation

ż = Fz + Tbu + ly (8.43)

x̂ = T−1z (8.44)

generates an estimate of x.

We first justify the procedure. Let us define

e := z − Tx

Then we have, replacing TA by FT + lc,

ė = ż − Tẋ = Fz + Tbu + lcx − TAx − Tbu

= Fz + lcx − (FT + lc)x = F(z − Tx) = Fe

If F is stable, for any e(0), the error vector e(t) approaches zero as t → ∞. Thus z approaches
Tx or, equivalently, T−1z is an estimate of x. All discussion in Section 8.2.1 applies here and
will not be repeated.

8.4.1 Reduced-Dimensional State Estimator

Consider the state equation in (8.42). If it is observable, then it can be transformed, dual to
Theorem 8.2, into the observable canonical form in (7.14). We see that y equals x1, the first
state variable. Therefore it is sufficient to construct an (n − 1)-dimensional state estimator to
estimate xi for i = 2, 3, . . . , n. This estimator with the output equation can then be used to
estimate all n state variables. This estimator has a lesser dimension than (8.42) and is called a
reduced-dimensional estimator.

Reduced-dimensional estimators can be designed by transformations or by solving Lya-
punov equations. The latter approach is considerably simpler and will be discussed next. For
the former approach, the interested reader is referred to Reference [6, pp. 361–363].

� Procedure 8.R1

1. Select an arbitrary (n − 1) × (n − 1) stable matrix F that has no eigenvalues in common with those
of A.

2. Select an arbitrary (n − 1) × 1 vector l such that (F, l) is controllable.

3. Solve the unique T in the Lyapunov equation TA − FT = lc. Note that T is an (n− 1)×n matrix.

4. Then the (n − 1)-dimensional state equation

ż = Fz + Tbu + ly (8.45)

x̂ =
[

c
T

]−1 [
y

z

]
(8.46)

is an estimate of x.

We first justify the procedure. We write (8.46) as

252 STATE FEEDBACK AND STATE ESTIMATORS

[
y

z

]
=
[

c
T

]
x̂ =: Px̂

which implies y = cx̂ and z = Tx̂. Clearly y is an estimate of cx. We now show that z is an
estimate of Tx. Define

e = z − Tx

Then we have

ė = ż − Tẋ = Fz + Tbu + lcx − TAx − Tbu = Fe

Clearly if F is stable, then e(t) → 0 as t → ∞. Thus z is an estimate of Tx.

� Theorem 8.6

If A and F have no common eigenvalues, then the square matrix

P =
[

c
T

]

where T is the unique solution of TA − FT = lc, is nonsingular if and only if (A, c) is observable and
(F, l) is controllable.

Proof: We prove the theorem for n = 4. The first part of the proof follows closely the
proof of Theorem 8.4. Let

�(s) = det (sI − A) = s4 + α1s
3 + α2s

2 + α3s + α4

Then, dual to (8.22), we have

− T�(F) = [l Fl F2l F3l]




α3 α2 α1 1

α2 α1 1 0

α1 1 0 0

1 0 0 0






c
cA
cA2

cA3


 (8.47)

and �(F) is nonsingular if A and F have no common eigenvalues. Note that if A is 4 × 4,
then F is 3×3. The rightmost matrix in (8.47) is the observability matrix of (A, c) and will
be denoted by O. The first matrix after the equality is the controllability matrix of (F, l)
with one extra column and will be denoted by C4. The middle matrix will be denoted by
� and is always nonsingular. Using these notations, we write T as −�−1(F)C4�O and P
becomes

P =
[

c
T

]
=
[

c
−�−1(F)C4�O

]

=
[

1 0
0 −�−1(F)

] [
c

C4�O

]
(8.48)

Note that if n = 4, then P, O, and � are 4 × 4; T and C4 are 3 × 4 and �(F) is 3 × 3.
If (F, l) is not controllable, C4 has rank at most 2. Thus T has rank at most 2 and P is
singular. If (A, c) is not observable, then there exists a nonzero 4 × 1 vector r such that

8.5 Feedback from Estimated States 253

Or = 0, which implies cr = 0 and Pr = 0. Thus P is singular. This shows the necessity
of the theorem.

Next we show the sufficiency by contradiction. Suppose P is singular. Then there
exists a nonzero vector r such that Pr = 0, which implies[

c
C4�O

]
r =

[
cr

C4�Or

]
= 0 (8.49)

Define a := �Or = [a1 a2 a3 a4]′ =: [ā a4]′, where ā represents the first three entries of
a. Expressing it explicitly yields


a1

a2

a3

a4


 =




α3 α2 α1 1

α2 α1 1 0

α1 1 0 0

1 0 0 0






cr
cAr
cA2r
cA3r


 =




x

x

x

cr




where x denotes entries that are not needed in subsequent discussion. Thus we have
a4 = cr. Clearly (8.49) implies a4 = cr = 0. Substituting a4 = 0 into the lower part of
(8.49) yields

C4�Or = C4a = C ā = 0 (8.50)

where C is 3 × 3 and is the controllability matrix of (F, l) and ā is the first three entries
of a. If (F, l) is controllable, then C ā = 0 implies ā = 0. In conclusion, (8.49) and the
controllability of (F, l) imply a = 0.

Consider �Or = a = 0. The matrix � is always nonsingular. If (A, c) is observable,
then O is nonsingular and �Or = 0 implies r = 0. This contradicts the hypothesis that r
is nonzero. Thus if (A, c) is observable and (F, l) is controllable, then P is nonsingular.
This establishes Theorem 8.6. Q.E.D.

Designing state estimators by solving Lyapunov equations is convenient because the
same procedure can be used to design full-dimensional and reduced-dimensional estimators.
As we shall see in a later section, the same procedure can also be used to design estimators for
multi-input multi-output systems.

8.5 Feedback from Estimated States

Consider a plant described by the n-dimensional state equation

ẋ = Ax + bu

y = cx
(8.51)

If (A, b) is controllable, state feedback u = r − kx can place the eigenvalues of (A − bk)

in any desired positions. If the state variables are not available for feedback, we can design a
state estimator. If (A, c) is observable, a full- or reduced-dimensional estimator with arbitrary
eigenvalues can be constructed. We discuss here only full-dimensional estimators. Consider
the n-dimensional state estimator

˙̂x = (A − lc)x̂ + bu + ly (8.52)

254 STATE FEEDBACK AND STATE ESTIMATORS

The estimated state in (8.52) can approach the actual state in (8.51) with any rate by selecting
the vector l.

The state feedback is designed for the state in (8.51). If x is not available, it is natural to
apply the feedback gain to the estimated state as

u = r − kx̂ (8.53)

as shown in Fig. 8.8. The connection is called the controller-estimator configuration. Three
questions may be raised in this connection: (1) The eigenvalues of (A −bk) are obtained from
u = r − kx. Do we still have the same set of eigenvalues in using u = r − kx̂? (2) Will
the eigenvalues of the estimator be affected by the connection? (3) What is the effect of the
estimator on the transfer function from r to y? To answer these questions, we must develop
a state equation to describe the overall system in Fig. 8.8. Substituting (8.53) into (8.51) and
(8.52) yields

ẋ = Ax − bkx̂ + br

˙̂x = (A − lc)x̂ + b(r − kx̂) + lcx

They can be combined as[
ẋ
˙̂x
]

=
[

A −bk
lc A − lc − bk

] [
x
x̂

]
+
[

b
b

]
r

y = [c 0]

[
x
x̂

] (8.54)

This 2n-dimensional state equation describes the feedback system in Fig. 8.8. It is not easy
to answer the posed questions from this equation. Let us introduce the following equivalence
transformation: [

x
e

]
=
[

x
x − x̂

]
=
[

I 0
I −I

] [
x
x̂

]
=: P

[
x
x̂

]

Computing P−1, which happens to equal P, and then using (4.26), we can obtain the following
equivalent state equation:[

ẋ
ė

]
=
[

A − bk bk
0 A − lc

] [
x
e

]
+
[

b
0

]
r

y = [c 0]

[
x
e

] (8.55)

r u y

y

Figure 8.8 Controller-estimator configuration.

8.6 State Feedback—Multivariable Case 255

The A-matrix in (8.55) is block triangular; therefore its eigenvalues are the union of those
of (A − bk) and (A − lc). Thus inserting the state estimator does not affect the eigenvalues
of the original state feedback; nor are the eigenvalues of the state estimator affected by the
connection. Thus the design of state feedback and the design of state estimator can be carried
out independently. This is called the separation property.

The state equation in (8.55) is of the form shown in (6.40); thus (8.55) is not controllable
and the transfer function of (8.55) equals the transfer function of the reduced equation

ẋ = (A − bk)x + br y = cx

or

ĝf (s) = c(sI − A + bk)−1b

(Theorem 6.6). This is the transfer function of the original state feedback system without using
a state estimator. Therefore the estimator is completely canceled in the transfer function from
r to y. This has a simple explanation. In computing transfer functions, all initial states are
assumed to be zero. Consequently, we have x(0) = x̂(0) = 0, which implies x(t) = x̂(t)

for all t . Thus, as far as the transfer function from r to y is concerned, there is no difference
whether a state estimator is employed or not.

8.6 State Feedback—Multivariable Case

This section extends state feedback to multivariable systems. Consider a plant described by
the n-dimensional p-input state equation

ẋ = Ax + Bu

y = Cx
(8.56)

In state feedback, the input u is given by

u = r − Kx (8.57)

where K is a p × n real constant matrix and r is a reference signal. Substituting (8.57) into
(8.56) yields

ẋ = (A − BK)x + Br

y = Cx
(8.58)

� Theorem 8.M1

The pair (A − BK, B), for any p × n real constant matrix K, is controllable if and only if (A, B) is
controllable.

The proof of this theorem follows closely the proof of Theorem 8.1. The only difference
is that we must modify (8.4) as

256 STATE FEEDBACK AND STATE ESTIMATORS

Cf = C




Ip −KB −K(A − BK)B −K(A − BK)2B
0 Ip −KB −K(A − BK)B
0 0 Ip −KB
0 0 0 Ip




where Cf and C are n × np controllability matrices with n = 4 and Ip is the unit matrix of
order p. Because the rightmost 4p × 4p matrix is nonsingular, Cf has rank n if and only if C
has rank n. Thus the controllability property is preserved in any state feedback. As in the SISO
case, the observability property, however, may not be preserved. Next we extend Theorem 8.3
to the matrix case

� Theorem 8.M3

All eigenvalues of (A − BK) can be assigned arbitrarily (provided complex conjugate eigenvalues are
assigned in pairs) by selecting a real constant K if and only if (A, B) is controllable.

If (A, B) is not controllable, then (A, B) can be transformed into the form shown in (8.36)
and the eigenvalues of Āc̄ will not be affected by any state feedback. This shows the necessity
of the theorem. The sufficiency will be established constructively in the next three subsections.

8.6.1 Cyclic Design

In this design, we change the multi-input problem into a single-input problem and then apply
Theorem 8.3. A matrix A is called cyclic if its characteristic polynomial equals its minimal
polynomial. From the discussion in Section 3.6, we can conclude that A is cyclic if and only
if the Jordan form of A has one and only one Jordan block associated with each distinct
eigenvalue.

� Theorem 8.7

If the n-dimensional p-input pair (A, B) is controllable and if A is cyclic, then for almost any p × 1
vector v, the single-input pair (A, Bv) is controllable.

We argue intuitively the validity of this theorem. Controllability is invariant under any
equivalence transformation; thus we may assume A to be in Jordan form. To see the basic idea,
we use the following example:

A =




2 1 0 0 0

0 2 1 0 0

0 0 2 0 0

0 0 0 −1 1

0 0 0 0 −1


 B =




0 1

0 0

1 2

4 3

1 0


 Bv = B

[
v1

v2

]
=




x

x

α

x

β


 (8.59)

There is only one Jordan block associated with each distinct eigenvalue; thus A is cyclic. The

8.6 State Feedback—Multivariable Case 257

condition for (A, B) to be controllable is that the third and the last rows of B are nonzero
(Theorem 6.8).

The necessary and sufficient conditions for (A, Bv) to be controllable are α �= 0 and
β �= 0 in (8.59). Because α = v1 + 2v2 and β = v1, either α or β is zero if and only if
v1 = 0 or v1/v2 = −2/1. Thus any v other than v1 = 0 and v1 = −2v2 will make (A, Bv)

controllable. The vector v can assume any value in the two-dimensional real space shown in
Fig. 8.9. The conditions v1 = 0 and v1 = −2v2 constitute two straight lines as shown. The
probability for an arbitrarily selected v to lie on either straight line is zero. This establishes
Theorem 8.6. The cyclicity assumption in this theorem is essential. For example, the pair

A =

 2 1 0

0 2 0

0 0 2


 B =


 2 1

0 2

1 0




is controllable (Theorem 6.8). However, there is no v such that (A, Bv) is controllable
(Corollary 6.8).

If all eigenvalues of A are distinct, then there is only one Jordan block associated with
each eigenvalue. Thus a sufficient condition for A to be cyclic is that all eigenvalues of A are
distinct.

� Theorem 8.8

If (A, B) is controllable, then for almost any p × n real constant matrix K, the matrix (A − BK) has
only distinct eigenvalues and is, consequently, cyclic.

We show intuitively the theorem for n = 4. Let the characteristic polynomial of A−BK be

�f (s) = s4 + a1s
3 + a2s

2 + a3s + a4

where the ai are functions of the entries of K. The differentiation of �f (s) with respect to s

yields

�′
f (s) = 4s3 + 3a1s

2 + 2a2s + a3

If �f (s) has repeated roots, then �f (s) and �′
f (s) are not coprime. The necessary and sufficient

condition for them to be not coprime is that their Sylvester resultant is singular or

Figure 8.9 Two-dimensional real space.

258 STATE FEEDBACK AND STATE ESTIMATORS

det




a4 a3 0 0 0 0 0 0

a3 2a2 a4 a3 0 0 0 0

a2 3a1 a3 2a2 a4 a3 0 0

a1 4 a2 3a1 a3 2a2 a4 a3

1 0 a1 4 a2 3a1 a3 2a2

0 0 1 0 a1 4 a2 3a1

0 0 0 0 1 0 a1 4

0 0 0 0 0 0 1 0




= b(kij) = 0

See (7.28). It is clear that all possible solutions of b(kij) = 0 constitute a very small subset of
all real kij . Thus if we select an arbitrary K, the probability for its entries to meet b(kij) = 0
is 0. Thus all eigenvalues of (A − BK) will be distinct. This establishes the theorem.

With these two theorems, we can now find a K to place all eigenvalues of (A − BK) in
any desired positions. If A is not cyclic, we introduce u = w − K1x, as shown in Fig. 8.10,
such that Ā := A − BK1 in

ẋ = (A − BK1)x + Bw =: Āx + Bw (8.60)

is cyclic. Because (A, B) is controllable, so is (Ā, B). Thus there exists a p × 1 real vector
v such that (Ā, Bv) is controllable.2 Next we introduce another state feedback w = r − K2x
with K2 = vk, where k is a 1 × n real vector. Then (8.60) becomes

ẋ = (Ā − BK2)x + Br = (Ā − Bvk)x + Br

Because the single-input pair (Ā, Bv) is controllable, the eigenvalues of (Ā − Bvk) can

Figure 8.10 State feedback by cyclic design.

2. The choices of K1 and v are not unique. They can be chosen arbitrarily and the probability is 1 that they will meet
the requirements. In Theorem 7.5 of Reference [5], a procedure is given to choose K1 and v with no uncertainty.
The computation, however, is complicated.

8.6 State Feedback—Multivariable Case 259

be assigned arbitrarily by selecting a k (Theorem 8.3). Combining the two state feedback
u = w − K1x and w = r − K2x as

u = r − (K1 + K2)x =: r − Kx

we obtain a K := K1 + K2 that achieves arbitrary eigenvalue assignment. This establishes
Theorem 8.M3.

8.6.2 Lyapunov-Equation Method

This section will extend the procedure of computing feedback gain in Section 8.2.1 to the
multivariable case. Consider an n-dimensional p-input pair (A, B). Find a p × n real constant
matrix K so that (A−BK) has any set of desired eigenvalues as long as the set does not contain
any eigenvalue of A.

� Procedure 8.M1

1. Select an n × n matrix F with a set of desired eigenvalues that contains no eigenvalues of A.

2. Select an arbitrary p × n matrix K̄ such that (F, K̄) is observable.

3. Solve the unique T in the Lyapunov equation AT − TF = BK̄.

4. If T is singular, select a different K̄ and repeat the process. If T is nonsingular, we compute
K = K̄T−1, and (A − BK) has the set of desired eigenvalues.

If T is nonsingular, the Lyapunov equation and KT = K̄ imply

(A − BK)T = TF or A − BK = TFT−1

Thus (A − BK) and F are similar and have the same set of eigenvalues. Unlike the SISO case
where T is always nonsingular, the T here may not be nonsingular even if (A, B) is controllable
and (F, K̄) is observable. In other words, the two conditions are necessary but not sufficient
for T to be nonsingular.

� Theorem 8.M4

If A and F have no eigenvalues in common, then the unique solution T of AT−TF = BK̄ is nonsingular
only if (A, B) is controllable and (F, K̄) is observable.

Proof: The proof of Theorem 8.4 applies here except that (8.22) must be modified as, for
n = 4,

− T�(F) = [B AB A2B A3B]




α3I α2I α1I I
α2I α1I I 0
α1I I 0 0

I 0 0 0






K̄
K̄F
K̄F2

K̄F3




or

260 STATE FEEDBACK AND STATE ESTIMATORS

− T�(F) = C�O (8.61)

where �(F) is nonsingular and C , �, and O are, respectively, n × np, np × np, and
np × n. If C or O has rank less than n, then T is singular following (3.61). However,
the conditions that C and O have rank n do not imply the nonsingularity of T. Thus the
controllability of (A, B) and observability of (F, K̄) are only necessary conditions for T
to be nonsingular. This establishes Theorem 8.M4. Q.E.D.

Given a controllable (A, B), it is possible to construct an observable (F, K̄) so that the
T in Theorem 8.M4 is singular. However, after selecting F, if K̄ is selected randomly and if
(F, K̄) is observable, it is believed that the probability for T to be nonsingular is 1. Therefore
solving the Lyapunov equation is a viable method of computing a feedback gain matrix to
achieve arbitrary eigenvalue assignment. As in the SISO case, we may choose F in companion
form or in modal form as shown in (8.23). If F is chosen as in (8.23), then we can select K̄ as

K̄ =
[

1 1 0 0 0

0 0 0 1 0

]
or K̄ =

[
0 0 1 0 0

1 0 0 1 0

]

(see Problem 6.16). Once F and K̄ are chosen, we can then use the MATLAB function lyap
to solve the Lyapunov equation. Thus the procedure can easily be carried out.

8.6.3 Canonical-Form Method

We introduced in the preceding subsections two methods of computing a feedback gain matrix
to achieve arbitrary eigenvalue assignment. The methods are relatively simple; however, they
will not reveal the structure of the resulting feedback system. In this subsection, we discuss
a different design that will reveal the effect of state feedback on the transfer matrix. We also
give a transfer matrix interpretation of state feedback.

In this design, we must transform (A, B) into a controllable canonical form. It is an
extension of Theorem 8.2 to the multivariable case. Although the basic idea is the same, the
procedure can become very involved. Therefore we will skip the details and present the final
result. To simplify the discussion, we assume that (8.56) has dimension 6, two inputs, and two
outputs. We first search linearly independent columns of C = [B AB · · · A5B] in order from
left to right. It is assumed that its controllability indices are µ1 = 4 and µ2 = 2. Then there
exists a nonsingular matrix P and x̄ = Px will transform (8.56) into the controllable canonical
form

˙̄x =




−α111 −α112 −α113 −α114
... −α121 −α122

1 0 0 0
... 0 0

0 1 0 0
... 0 0

0 0 1 0
... 0 0

· ·
−α211 −α212 −α213 −α214

... −α221 −α222

0 0 0 0
... 1 0




x̄

8.6 State Feedback—Multivariable Case 261

+




1 b12

0 0

0 0

0 0

· · · · · ·
0 1

0 0




u (8.62)

y =
[

β111 β112 β113 β114 β121 β122

β211 β212 β213 β214 β221 β222

]
x̄

Note that this form is identical to the one in (7.104).
We now discuss how to find a feedback gain matrix to achieve arbitrary eigenvalue

assignment. From a given set of six desired eigenvalues, we can form

�f (s) = (s4 + ᾱ111s
3 + ᾱ112s

2 + ᾱ113s + ᾱ114)(s
2 + ᾱ221s + ᾱ222) (8.63)

Let us select K̄ as

K̄ =
[

1 b12

0 1

]−1 [
ᾱ111 − α111 ᾱ112 − α112 ᾱ113 − α113

ᾱ211 − α211 ᾱ212 − α212 ᾱ213 − α213

ᾱ114 − α114 −α121 −α122

ᾱ214 − α214 ᾱ221 − α221 ᾱ222 − α222

]
(8.64)

Then it is straightforward to verify the following

Ā − B̄K̄ =




−ᾱ111 −ᾱ112 −ᾱ113 −ᾱ114
... 0 0

1 0 0 0
... 0 0

0 1 0 0
... 0 0

0 0 1 0
... 0 0

· ·
−ᾱ211 −ᾱ212 −ᾱ213 −ᾱ214

... −ᾱ221 −ᾱ222

0 0 0 0
... 1 0




(8.65)

Because (Ā− B̄K̄) is block triangular, for any ᾱ21i , i = 1, 2, 3, 4, its characteristic polynomial
equals the product of the characteristic polynomials of the two diagonal blocks of orders 4
and 2. Because the diagonal blocks are of companion form, we conclude that the characteristic
polynomial of (Ā−B̄K̄) equals the one in (8.63). If K = K̄P, then (Ā−B̄K̄) = P(A−BK)P−1.
Thus the feedback gain K = K̄P will place the eigenvalues of (A−BK) in the desired locations.
This establishes once again Theorem 8.M3.

Unlike the single-input case, where the feedback gain is unique, the feedback gain matrix
in the multi-input case is not unique. For example, the K̄ in (8.64) yields a lower block-triangular
matrix in (Ā − B̄K̄). It is possible to select a different K̄ to yield an upper block-triangular
matrix or a block-diagonal matrix. Furthermore, a different grouping of (8.63) will again yield
a different K̄.

262 STATE FEEDBACK AND STATE ESTIMATORS

8.6.4 Effect on Transfer Matrices3

In the single-variable case, state feedback can shift the poles of a plant transfer function ĝ(s) to
any positions and yet has no effect on the zeros. Or, equivalently, state feedback can change the
denominator coefficients, except the leading coefficient 1, to any values but has no effect on the
numerator coefficients. Although we can establish a similar result for the multivariable case
from (8.62) and (8.65), it is instructive to do so by using the result in Section 7.9. Following
the notation in Section 7.9, we express Ĝ(s) = C(sI − A)−1B as

Ĝ(s) = N(s)D−1(s) (8.66)

or

ŷ(s) = N(s)D−1(s)û(s) (8.67)

where N(s) and D(s) are right coprime and D(s) is column reduced. Define

D(s)v̂(s) = û(s) (8.68)

as in (7.93). Then we have

ŷ(s) = N(s)v̂(s) (8.69)

Let H(s) and L(s) be defined as in (7.91) and (7.92). Then the state vector in (8.62) is

x̂(s) = L(s)v̂(s)

Thus the state feedback becomes, in the Laplace-transform domain,

û(s) = r̂(s) − Kx̂(s) = r̂(s) − KL(s)v̂(s) (8.70)

and can be represented as shown in Fig. 8.11.
Let us express D(s) as

D(s) = DhcH(s) + DlcL(s) (8.71)

Substituting (8.71) and (8.70) into (8.68) yields

[DhcH(s) + DlcL(s)] v̂(s) = r̂(s) − KL(s)v̂(s)

which implies

Figure 8.11 Transfer matrix
interpretation of state feedback.

3. This subsection may be skipped without loss of continuity. The material in Section 7.9 is needed to study this
subsection.

8.7 State Estimators—Multivariable Case 263

[DhcH(s) + (Dlc + K)L(s)] v̂(s) = r̂(s)

Substituting this into (8.69) yields

ŷ(s) = N(s) [DhcH(s) + (Dlc + K)L(s)]−1 r̂(s)

Thus the transfer matrix from r to y is

Ĝf (s) = N(s) [DhcH(s) + (Dlc + K)L(s)]−1 (8.72)

The state feedback changes the plant transfer matrix N(s)D−1(s) to the one in (8.72). We see
that the numerator matrix N(s) is not affected by the state feedback. Neither are the column
degree H(s) and the column-degree coefficient matrix Dhc affected by the state feedback.
However, all coefficients associated with L(s) can be assigned arbitrarily by selecting a K.
This is similar to the SISO case.

It is possible to extend the robust tracking and disturbance rejection discussed in Section
8.3 to the multivariable case. It is simpler, however, to do so by using coprime fractions;
therefore it will not be discussed here.

8.7 State Estimators—Multivariable Case

All discussion for state estimators in the single-variable case applies to the multivariable
case; therefore the discussion will be brief. Consider the n-dimensional p-input q-output state
equation

ẋ = Ax + Bu

y = Cx
(8.73)

The problem is to use available input u and output y to drive a system whose output gives an
estimate of the state x. We extend (8.40) to the multivariable case as

˙̂x = (A − LC)x̂ + Bu + Ly (8.74)

This is a full-dimensional state estimator. Let us define the error vector as

e(t) := x(t) − x̂(t) (8.75)

Then we have, as in (8.41),

ė = (A − LC)e (8.76)

If (A, C) is observable, then all eigenvalues of (A−LC) can be assigned arbitrarily by choosing
an L. Thus the convergence rate for the estimated state x̂ to approach the actual state x can be
as fast as desired. As in the SISO case, the three methods of computing state feedback gain K
in Sections 8.6.1 through 8.6.3 can be applied here to compute L.

Next we discuss reduced-dimensional state estimators. The next procedure is an extension
of Procedure 8.R1 to the multivariable case.

264 STATE FEEDBACK AND STATE ESTIMATORS

� Procedure 8.MR1

Consider the n-dimensional q-output observable pair (A, C). It is assumed that C has rank q .

1. Select an arbitrary (n− q)× (n− q) stable matrix F that has no eigenvalues in common with those
of A.

2. Select an arbitrary (n − q) × q matrix L such that (F, L) is controllable.

3. Solve the unique (n − q) × n matrix T in the Lyapunov equation TA − FT = LC.

4. If the square matrix of order n

P =
[

C
T

]
(8.77)

is singular, go back to Step 2 and repeat the process. If P is nonsingular, then the (n−q)-dimensional
state equation

ż = Fz + TBu + Ly (8.78)

x̂ =
[

C
T

]−1 [y
z

]
(8.79)

generates an estimate of x.

We first justify the procedure. We write (8.79) as[
y
z

]
=
[

C
T

]
x̂

which implies y = Cx̂ and z = Tx̂. Clearly y is an estimate of Cx. We now show that z is an
estimate of Tx. Let us define

e := z − Tx

Then we have

ė = ż − Tẋ = Fz + TBu + LCx − TAx − TBu

= Fz + (LC − TA)x = F(z − Tx) = Fe

If F is stable, then e(t) → 0 as t → ∞. Thus z is an estimate of Tx.

� Theorem 8.M6

If A and F have no common eigenvalues, then the square matrix

P :=
[

C
T

]

where T is the unique solution of TA − FT = LC, is nonsingular only if (A, C) is observable and
(F, L) is controllable.

This theorem can be proved by combining the proofs of Theorems 8.M4 and 8.6. Unlike
Theorem 8.6, where the conditions are necessary and sufficient for P to be nonsingular, the

8.8 Feedback from Estimated States–Multivariable Case 265

conditions here are only necessary. Given (A, C), it is possible to construct a controllable pair
(F, L) so that P is singular. However, after selecting F, if L is selected randomly and if (F, L)

is controllable, it is believed that the probability for P to be nonsingular is 1.

8.8 Feedback from Estimated States–Multivariable Case

This section will extend the separation property discussed in Section 8.5 to the multivariable
case. We use the reduced-dimensional state estimator; therefore the development is more
complex.

Consider the n-dimensional state equation

ẋ = Ax + Bu

y = Cx
(8.80)

and the (n − q)-dimensional state estimator in (8.78) and (8.79). First we compute the inverse
of P in (8.77) and then partition it as [Q1 Q2], where Q1 is n×q and Q2 is n× (n−q); that is,

[Q1 Q2]

[
C
T

]
= Q1C + Q2T = I (8.81)

Then the (n − q)-dimensional state estimator in (8.78) and (8.79) can be written as

ż = Fz + TBu + Ly (8.82)

x̂ = Q1y + Q2z (8.83)

If the original state is not available for state feedback, we apply the feedback gain matrix to x̂
to yield

u = r − Kx̂ = r − KQ1y − KQ2z (8.84)

Substituting this into (8.80) and (8.82) yields

ẋ = Ax + B(r − KQ1Cx − KQ2z)

= (A − BKQ1C)x − BKQ2z + Br (8.85)

ż = Fz + TB(r − KQ1Cx − KQ2z) + LCx

= (LC − TBKQ1C)x + (F − TBKQ2)z + TBr (8.86)

They can be combined as[
ẋ
ż

]
=
[

A − BKQ1C −BKQ2

LC − TBKQ1C F − TBKQ2

] [
x
z

]
+
[

B
TB

]
r

y = [C 0]

[
x
z

]
(8.87)

This (2n − q)-dimensional state equation describes the feedback system in Fig. 8.8. As in the
SISO case, let us carry out the following equivalence transformation

266 STATE FEEDBACK AND STATE ESTIMATORS

[
x
e

]
=
[

x
z − Tx

]
=
[

In 0
−T In−q

] [
x
z

]

After some manipulation and using TA − FT = LC and (8.81), we can finally obtain the
following equivalent state equation[

ẋ
ė

]
=
[

A − BK −BKQ2

0 F

] [
x
e

]
+
[

B
0

]
r

y = [C 0]

[
x
e

] (8.88)

This equation is similar to (8.55) for the single-variable case. Therefore all discussion there
applies, without any modification, to the multivariable case. In other words, the design of a
state feedback and the design of a state estimator can be carried out independently. This is
the separation property. Furthermore, all eigenvalues of F are not controllable from r and the
transfer matrix from r to y equals

Ĝf (s) = C(sI − A + BK)−1B

PROBLEMS
8.1 Given

ẋ =
[

2 1

−1 1

]
x +

[
1

2

]
u y = [1 1]x

find the state feedback gain k so that the state feedback system has −1 and −2 as its
eigenvalues. Compute k directly without using any equivalence transformation.

8.2 Repeat Problem 8.1 by using (8.13).

8.3 Repeat Problem 8.1 by solving a Lyapunov equation.

8.4 Find the state feedback gain for the state equation

ẋ =

 1 1 −2

0 1 1

0 0 1


 x +


 1

0

1


 u

so that the resulting system has eigenvalues −2 and −1 ± j1. Use the method you think
is the simplest by hand to carry out the design.

8.5 Consider a system with transfer function

ĝ(s) = (s − 1)(s + 2)

(s + 1)(s − 2)(s + 3)

Is it possible to change the transfer function to

ĝf (s) = s − 1

(s + 2)(s + 3)

by state feedback? Is the resulting system BIBO stable? Asymptotically stable?

Problems 267

8.6 Consider a system with transfer function

ĝ(s) = (s − 1)(s + 2)

(s + 1)(s − 2)(s + 3)

Is it possible to change the transfer function to

ĝf (s) = 1

s + 3

by state feedback? Is the resulting system BIBO stable? Asymptotically stable?

8.7 Consider the continuous-time state equation

ẋ =

 1 1 −2

0 1 1

0 0 1


 x +


 1

0

1


 u

y = [2 0 0]x

Let u = pr − kx. Find the feedforward gain p and state feedback gain k so that the
resulting system has eigenvalues −2 and −1± j1 and will track asymptotically any step
reference input.

8.8 Consider the discrete-time state equation

x[k + 1] =

 1 1 −2

0 1 1

0 0 1


 x[k] +


 1

0

1


 u[k]

y[k] = [2 0 0]x[k]

Find the state feedback gain so that the resulting system has all eigenvalues at z = 0.
Show that for any initial state, the zero-input response of the feedback system becomes
identically zero for k ≥ 3.

8.9 Consider the discrete-time state equation in Problem 8.8. Let u[k] = pr[k] − kx[k],
where p is a feedforward gain. For the k in Problem 8.8, find a gain p so that the output
will track any step reference input. Show also that y[k] = r[k] for k ≥ 3. Thus exact
tracking is achieved in a finite number of sampling periods instead of asymptotically.
This is possible if all poles of the resulting system are placed at z = 0. This is called the
dead-beat design.

8.10 Consider the uncontrollable state equation

ẋ =




2 1 0 0

0 2 0 0

0 0 −1 0

0 0 0 −1


 x +




0

1

1

1


 u

Is it possible to find a gain k so that the equation with state feedback u = r − kx has
eigenvalues −2, −2, −1, −1? Is it possible to have eigenvalues −2, −2, −2, −1? How
about −2, −2, −2, −2? Is the equation stabilizable?

268 STATE FEEDBACK AND STATE ESTIMATORS

8.11 Design a full-dimensional and a reduced-dimensional state estimator for the state equa-
tion in Problem 8.1. Select the eigenvalues of the estimators from {−3, −2 ± j2}.

8.12 Consider the state equation in Problem 8.1. Compute the transfer function from r to y of
the state feedback system. Compute the transfer function from r to y if the feedback gain
is applied to the estimated state of the full-dimensional estimator designed in Problem
8.11. Compute the transfer function from r to y if the feedback gain is applied to the
estimated state of the reduced-dimensional state estimator also designed in Problem 8.11.
Are the three overall transfer functions the same?

8.13 Let

A =




0 1 0 0

0 0 1 0

−3 1 2 3

2 1 0 0


 B =




0 0

0 0

1 2

0 2




Find two different constant matrices K such that (A − BK) has eigenvalues −4 ± 3j

and −5 ± 4j .

Chapter

9
Pole Placement and

Model Matching

9.1 Introduction

We first give reasons for introducing this chapter. Chapter 6 discusses state-space analysis
(controllability and observability) and Chapter 8 introduces state-space design (state feedback
and state estimators). In Chapter 7 coprime fractions were discussed. Therefore it is logical to
discuss in this chapter their applications in design.

One way to introduce coprime fraction design is to develop the Bezout identity and to
parameterize all stabilization compensators. See References [3, 6, 9, 13, 20]. This approach
is important in some optimization problems but is not necessarily convenient for all designs.
See Reference [8]. We study in this chapter only designs of minimum-degree compensators
to achieve pole placement and model matching. We will change the problems into solving
linear algebraic equations. Using only Theorem 3.2 and its corollary, we can establish all
needed results. Therefore we can bypass the Bezout identity and some polynomial theorems
and simplify the discussion.

Most control systems can be formulated as shown in Fig. 8.1. That is, given a plant with
input u and output y and a reference signal r , design an overall system so that the output y

will follow the reference signal r as closely as possible. The plant input u is also called the
actuating signal and the plant output y, the controlled signal. If the actuating signal u depends
only on the reference signal r as shown in Fig. 9.1(a), it is called an open-loop control. If u

depends on r and y, then it is called a closed-loop or feedback control. The open-loop control
is, in general, not satisfactory if there are plant parameter variations due to changes of load,
environment, or aging. It is also very sensitive to noise and disturbance, which often exist in
the real world. Therefore open-loop control is used less often in practice.

269

270 POLE PLACEMENT AND MODEL MATCHING

There are many possible feedback configurations. The simplest is the unity-feedback
configuration shown in Fig. 9.1(b) in which the constant gain p and the compensator with
transfer function C(s) are to be designed. Clearly we have

û(s) = C(s)[pr̂(s) − ŷ(s)] (9.1)

Because p is a constant, the reference signal r and the plant output y drive essentially the same
compensator to generate an actuating signal. Thus the configuration is said to have one degree
of freedom. Clearly the open-loop configuration also has one degree of freedom.

The connection of state feedback and state estimator in Fig. 8.8 can be redrawn as shown
in Fig. 9.1(c). Simple manipulation yields

û(s) = 1

1 + C1(s)
r̂(s) − C2(s)

1 + C1(s)
ŷ(s) (9.2)

We see that r and y drive two independent compensators to generate a u. Thus the configuration
is said to have two degrees of freedom.

A more natural two-degree-of-freedom configuration can be obtained by modifying
(9.1) as

û(s) = C1(s)r̂(s) − C2(s)ŷ(s) (9.3)

and is plotted in Fig. 9.1(d). This is the most general control signal because each of r and y

drives a compensator, which we have freedom in designing. Thus no configuration has three
degrees of freedom. There are many possible two-degree-of-freedom configurations; see, for
example, Reference [12]. We call the one in Fig. 9.1(d) the two-parameter configuration;
the one in Fig. 9.1(c) the controller-estimator or plant-input–output-feedback configuration.
Because the two-parameter configuration seems to be more natural and more suitable for
practical application, we study only this configuration in this chapter. For designs using the
plant-input–output-feedback configuration, see Reference [6].

Figure 9.1 Control configurations.

9.1 Introduction 271

The plants studied in this chapter will be limited to those describable by strictly proper
rational functions or matrices. We also assume that every transfer matrix has full rank in the
sense that if Ĝ(s) is q ×p, then it has a q × q or p ×p submatrix with a nonzero determinant.
If Ĝ(s) is square, then its determinant is nonzero or its inverse exists. This is equivalent to
the assumption that if (A, B, C) is a minimal realization of the transfer matrix, then B has full
column rank and C has full row rank.

The design to be introduced in this chapter is based on coprime polynomial fractions
of rational matrices. Thus the concept of coprimeness and the method of computing coprime
fractions introduced in Sections 7.1 through 7.3 and 7.6 through 7.8 are needed for studying
this chapter. The rest of Chapter 7 and the entire Chapter 8, however, are not needed here. In
this chapter, we will change the design problem into solving sets of linear algebraic equations.
Thus the method is called the linear algebraic method in Reference [7].

For convenience, we first introduce some terminology. Every transfer function ĝ(s) =
N(s)/D(s) is assumed to be a coprime fraction. Then every root of D(s) is a pole and every
root of N(s) is a zero. A pole is called a stable pole if it has a negative real part; an unstable
pole if it has a zero or positive real part. We also define

● Minimum-phase zeros: zeros with negative real parts

● Nonminimum-phase zeros: zeros with zero or positive real parts

Although some texts call them stable and unstable zeros, they have nothing to do with stability.
A transfer function with only minimum-phase zeros has the smallest phase among all transfer
functions with the same amplitude characteristics. See Reference [7, pp. 284–285]. Thus we
use the aforementioned terminology. A polynomial is called a Hurwitz polynomial if all its
roots have negative real parts.

9.1.1 Compensator Equations—Classical Method

Consider the equation

A(s)D(s) + B(s)N(s) = F(s) (9.4)

where D(s), N(s), and F(s) are given polynomials and A(s) and B(s) are unknown poly-
nomials to be solved. Mathematically speaking, this problem is equivalent to the problem of
solving integer solutions A and B in AD + BN = F , where D, N , and F are given integers.
This is a very old mathematical problem and has been associated with mathematicians such
as Diophantine, Bezout, and Aryabhatta.1 To avoid controversy, we follow Reference [3] and
call it a compensator equation. All design problems in this chapter can be reduced to solving
compensator equations. Thus the equation is of paramount importance.

We first discuss the existence condition and general solutions of the equation. What will
be discussed, however, is not needed in subsequent sections and the reader may glance through
this subsection.

1. See Reference [21, last page of Preface].

272 POLE PLACEMENT AND MODEL MATCHING

� Theorem 9.1

Given polynomials D(s) and N(s), polynomial solutions A(s) and B(s) exist in (9.4) for any
polynomial F(s) if and only if D(s) and N(s) are coprime.

Suppose D(s) and N(s) are not coprime and contain the same factor s + a. Then the
factor s + a will appear in F(s). Thus if F(s) does not contain the factor, no solutions exist in
(9.4). This shows the necessity of the theorem.

If D(s) and N(s) are coprime, there exist polynomials Ā(s) and B̄(s) such that

Ā(s)D(s) + B̄(s)N(s) = 1 (9.5)

Its matrix version is called the Bezout identity in Reference [13]. The polynomials Ā(s) and
B̄(s) can be obtained by the Euclidean algorithm and will not be discussed here. See Reference
[6, pp. 578–580]. For example, if D(s) = s2 − 1 and N(s) = s − 2, then Ā(s) = 1/3 and
B̄(s) = −(s + 2)/3 meet (9.5). For any polynomial F(s), (9.5) implies

F(s)Ā(s)D(s) + F(s)B̄(s)N(s) = F(s) (9.6)

Thus A(s) = F(s)Ā(s) and B(s) = F(s)B̄(s) are solutions. This shows the sufficiency of the
theorem.

Next we discuss general solutions. For any D(s) and N(s), there exist two polynomials
Â(s) and B̂(s) such that

Â(s)D(s) + B̂(s)N(s) = 0 (9.7)

Obviously Â(s) = −N(s) and B̂(s) = D(s) are such solutions. Then for any polynomial
Q(s),

A(s) = Ā(s)F (s) + Q(s)Â(s) B(s) = B̄(s)F (s) + Q(s)B̂(s) (9.8)

are general solutions of (9.4). This can easily be verified by substituting (9.8) into (9.4) and
using (9.5) and (9.7).

Example 9.1 Given D(s) = s2 − 1, N(s) = s − 2, and F(s) = s3 + 4s2 + 6s + 4, then

A(s) = 1
3 (s3 + 4s2 + 6s + 4) + Q(s)(−s + 2)

B(s) = − 1
3 (s + 2)(s3 + 4s2 + 6s + 4) + Q(s)(s2 − 1) (9.9)

for any polynomial Q(s), are solutions of (9.4).

Although the classical method can yield general solutions, the solutions are not necessarily
convenient to use in design. For example, we may be interested in solving A(s) and B(s) with
least degrees to meet (9.4). For the polynomials in Example 9.1, after some manipulation, we
find that if Q(s) = (s2 + 6s + 15)/3, then (9.9) reduces to

A(s) = s + 34/3 B(s) = (−22s − 23)/3 (9.10)

9.2 Unity-Feedback Configuration—Pole Placement 273

They are the least-degree solutions of Example 9.1. In this chapter, instead of solving the
compensator equation directly as shown, we will change it into solving a set of linear algebraic
equations as in Section 7.3. By so doing, we can bypass some polynomial theorems.

9.2 Unity-Feedback Configuration—Pole Placement

Consider the unity-feedback system shown in Fig. 9.1(b). The plant transfer function ĝ(s) is
assumed to be strictly proper and of degree n. The problem is to design a proper compensator
C(s) of least possible degree m so that the resulting overall system has any set of n+m desired
poles. Because all transfer functions are required to have real coefficients, complex conjugate
poles must be assigned in pairs. This will be a standing assumption throughout this chapter.

Let ĝ(s) = N(s)/D(s) and C(s) = B(s)/A(s). Then the overall transfer function from
r to y in Fig. 9.1(b) is

ĝo(s) = pC(s)ĝ(s)

1 + C(s)ĝ(s)
=

p
B(s)

A(s)

N(s)

D(s)

1 + B(s)

A(s)

N(s)

D(s)

= pB(s)N(s)

A(s)D(s) + B(s)N(s)
(9.11)

In pole assignment, we are interested in assigning all poles of ĝo(s) or, equivalently, all roots
of A(s)D(s) + B(s)N(s). In this design, nothing is said about the zeros of ĝo(s). As we
can see from (9.11), the design not only has no effect on the plant zeros (roots of N(s))
but also introduces new zeros (roots of B(s)) into the overall transfer function. On the other
hand, the poles of the plant and compensator are shifted from D(s) and A(s) to the roots of
A(s)D(s) + B(s)N(s). Thus feedback can shift poles but has no effect on zeros.

Given a set of desired poles, we can readily form a polynomial F(s) that has the desired
poles as its roots. Then the pole-placement problem becomes one of solving the polynomial
equation

A(s)D(s) + B(s)N(s) = F(s) (9.12)

Instead of solving (9.12) directly, we will transform it into solving a set of linear algebraic
equations. Let deg N(s) < deg D(s) = n and deg B(s) ≤ deg A(s) = m. Then F(s) in (9.12)
has degree at most n + m. Let us write

D(s) = D0 + D1s + D2s
2 + · · · + Dns

n Dn �= 0

N(s) = N0 + N1s + N2s
2 + · · · + Nns

n

A(s) = A0 + A1s + A2s
2 + · · · + Amsm

B(s) = B0 + B1s + B2s
2 + · · · + Bmsm

F(s) = F0 + F1s + F2s
2 + · · · + Fn+msn+m

where all coefficients are real constants, not necessarily nonzero. Substituting these into (9.12)
and matching the coefficients of like powers of s, we obtain

274 POLE PLACEMENT AND MODEL MATCHING

A0D0 + B0N0 = F0

A0D1 + B0N1 + A1D0 + B1N0 = F1

...

AmDn + BmNn = Fn+m

There are a total of (n + m + 1) equations. They can be arranged in matrix form as

[A0 B0 A1 B1 · · · Am Bm]Sm = [F0 F1 F2 · · · Fn+m] (9.13)

with

Sm :=




D0 D1 · · · Dn 0 · · · 0

N0 N1 · · · Nn 0 · · · 0

· ·
0 D0 · · · Dn−1 Dn · · · 0

0 N0 · · · Nn−1 Nn · · · 0

· ·
...

...
...

...
...

· ·
0 0 · · · 0 D0 · · · Dn

0 0 · · · 0 N0 · · · Nn




(9.14)

If we take the transpose of (9.13), then it becomes the standard form studied in Theorems 3.1
and 3.2. We use the form in (9.13) because it can be extended directly to the matrix case. The
matrix Sm has 2(m + 1) rows and (n + m + 1) columns and is formed from the coefficients
of D(s) and N(s). The first two rows are simply the coefficients of D(s) and N(s) arranged
in ascending powers of s. The next two rows are the first two rows shifted to the right by one
position. We repeat the process until we have (m + 1) sets of coefficients. The left-hand-side
row vector of (9.13) consists of the coefficients of the compensator C(s) to be solved. If C(s)

has degree m, then the row vector has 2(m + 1) entries. The right-hand-side row vector of
(9.13) consists of the coefficients of F(s). Now solving the compensator equation in (9.12)
becomes solving the linear algebraic equation in (9.13).

Applying Corollary 3.2, we conclude that (9.13) has a solution for any F(s) if and only
if Sm has full column rank. A necessary condition for Sm to have full column rank is that Sm

is square or has more rows than columns, that is,

2(m + 1) ≥ n + m + 1 or m ≥ n − 1

If m < n − 1, then Sm does not have full column rank and solutions may exist for some F(s),
but not for every F(s). Thus if the degree of the compensator is less than n−1, it is not possible
to achieve arbitrary pole placement.

If m = n−1, Sn−1 becomes a square matrix of order 2n. It is the transpose of the Sylvester
resultant in (7.28) with n = 4. As discussed in Section 7.3, Sn−1 is nonsingular if and only if
D(s) and N(s) are coprime. Thus if D(s) and N(s) are coprime, then Sn−1 has rank 2n (full
column rank). Now if m increases by 1, the number of columns increases by 1 but the the

9.2 Unity-Feedback Configuration—Pole Placement 275

number of rows increases by 2. Because Dn �= 0, the new D row is linearly independent of its
preceding rows. Thus the 2(n + 1) × (2n + 1) matrix Sn has rank (2n + 1) (full column rank).
Repeating the argument, we conclude that if D(s) and N(s) are coprime and if m ≥ n − 1,
then the matrix Sm in (9.14) has full column rank.

� Theorem 9.2

Consider the unity-feedback system shown in Fig. 9.1(b). The plant is described by a strictly proper
transfer function ĝ(s) = N(s)/D(s) with N(s) and D(s) coprime and deg N(s) < deg D(s) = n.
Let m ≥ n − 1. Then for any polynomial F(s) of degree (n + m), there exists a proper compensator
C(s) = B(s)/A(s) of degree m such that the overall transfer function equals

ĝo(s) = pN(s)B(s)

A(s)D(s) + B(s)N(s)
= pN(s)B(s)

F (s)

Furthermore, the compensator can be obtained by solving the linear algebraic equation in (9.13).

As discussed earlier, the matrix Sm has full column rank for m ≥ n − 1; therefore, for
any (n + m) desired poles or, equivalently, for any F(s) of degree (n + m), solutions exist in
(9.13). Next we show that B(s)/A(s) is proper or Am �= 0. If N(s)/D(s) is strictly proper,
then Nn = 0 and the last equation of (9.13) reduces to

AmDn + BmNn = DnAm = Fn+m

Because F(s) has degree (n + m), we have Fn+m �= 0 and, consequently, Am �= 0. This
establishes the theorem. If m = n− 1, the compensator is unique; if m > n− 1, compensators
are not unique and free parameters can be used to achieve other design objectives, as we will
discuss later.

9.2.1 Regulation and Tracking

Pole placement can be used to achieve the regulation and tracking discussed in Section 8.3. In
the regulator problem, we have r = 0 and the problem is to design a compensator C(s) so that
the response excited by any nonzero initial state will die out at a desired rate. For this problem,
if all poles of ĝo(s) are selected to have negative real parts, then for any gain p, in particular
p = 1 (no feedforward gain is needed), the overall system will achieve regulation.

We discuss next the tracking problem. Let the reference signal be a step function with
magnitude a. Then r̂(s) = a/s and the output ŷ(s) equals

ŷ(s) = ĝo(s)r̂(s) = ĝo(s)
a

s

If ĝo(s) is BIBO stable, the output will approach the constant ĝo(0)a (Theorem 5.2). This can
also be obtained by employing the final-value theorem of the Laplace transform as

lim
t→∞ y(t) = lim

s→0
sŷ(s) = ĝo(0)a

Thus in order to track asymptotically any step reference input, ĝo(s) must be BIBO stable and
ĝo(0) = 1. The transfer function from r to y in Fig. 9.1(b) is ĝo(s) = pN(s)B(s)/F (s). Thus
we have

276 POLE PLACEMENT AND MODEL MATCHING

ĝo(0) = p
N(0)B(0)

F (0)
= p

B0N0

F0

which implies

p = F0

B0N0
(9.15)

Thus in order to track any step reference input, we require B0 �= 0 and N0 �= 0. The constant
B0 is a coefficient of the compensator and can be designed to be nonzero. The coefficient N0

is the constant term of the plant numerator. Thus if the plant transfer function has one or more
zeros at s = 0, then N0 = 0 and the plant cannot be designed to track any step reference input.
This is consistent with the discussion in Section 8.3.

If the reference signal is a ramp function or r(t) = at , for t ≥ 0, then using a similar
argument, we can show that the overall transfer function ĝo(s) must be BIBO stable and has
the properties ĝo(0) = 1 and ĝ′

o(0) = 0 (Problems 9.13 and 9.14). This is summarized in the
following.

● Regulation⇔ ĝo(s) BIBO stable.

● Tracking step reference input⇔ ĝo(s) BIBO stable and ĝo(0) = 1.

● Tracking ramp reference input⇔ ĝo(s) BIBO stable, ĝo(0) = 1, and ĝ′
o(0) = 0.

Example 9.2 Given a plant with transfer function ĝ(s) = (s − 2)/(s2 − 1), find a proper
compensator C(s) and a gain p in the unity-feedback configuration in Fig. 9.1(b) so that the
output y will track asymptotically any step reference input.

The plant transfer function has degree n = 2. Thus if we choose m = 1, all three poles of
the overall system can be assigned arbitrarily. Let the three poles be selected as −2, −1 ± j1;
they spread evenly in the sector shown in Fig. 8.3(a). Then we have

F(s) = (s + 2)(s + 1 + j1)(s + 1 − j1) = (s + 2)(s2 + 2s + 2) = s3 + 4s2 + 6s + 4

We use the coefficients of D(s) = −1 + 0 · s + 1 · s2 and N(s) = −2 + 1 · s + 0 · s2 to form
(9.13) as

[A0 B0 A1 B1]




−1 0 1 0

−2 1 0 0

· · · · · · · · · · · ·
0 −1 0 1

0 −2 1 0


 = [4 6 4 1]

Its solution is

A1 = 1 A0 = 34/3 B1 = −22/3 B0 = −23/3

This solution can easily be obtained using the MATLAB function / (slash), which denotes
matrix right division. Thus we have2

2. This is the solution obtained in (9.10). This process of solving the polynomial equation in (9.13) is considerably
simpler than the procedure discussed in Section 9.1.1.

9.2 Unity-Feedback Configuration—Pole Placement 277

A(s) = s + 34/3 B(s) = (−22/3)s − 23/3 = (−22s − 23)/3

and the compensator

C(s) = B(s)

A(s)
= −(23 + 22s)/3

34/3 + s
= −22s − 23

3s + 34
(9.16)

will place the three poles of the overall system at −2 and −1 ± j1. If the system is designed to
achieve regulation, we set p = 1 (no feedforward gain is needed) and the design is completed.
To design tracking, we check whether or not N0 �= 0. This is the case; thus we can find a p

so that the overall system will track asymptotically any step reference input. We use (9.15) to
compute p:

p = F0

B0N0
= 4

(−23/3)(−2)
= 6

23
(9.17)

Thus the overall transfer function from r to y is

ĝo(s) = 6

23

[−(22s + 23)/3](s − 2)

(s3 + 4s3 + 6s + 4)
= −2(22s + 23)(s − 2)

23(s3 + 4s2 + 6s + 4)
(9.18)

Because ĝo(s) is BIBO stable and ĝo(0) = 1, the overall system will track any step reference
input.

9.2.2 Robust Tracking and Disturbance Rejection

Consider the design problem in Example 9.2. Suppose after the design is completed, the plant
transfer function ĝ(s) changes, due to load variations, to ˆ̄g(s) = (s − 2.1)/(s2 − 0.95). Then
the overall transfer function becomes

ˆ̄go(s) = pC(s) ˆ̄g(s)

1 + C(s) ˆ̄g(s)
= 6

23

−22s − 23

3s + 34

s − 2.1

s − 0.95

1 + −22s − 23

3s + 34

s − 2.1

s − 0.95

= −6(22s + 23)(s − 2.1)

23(3s3 + 12s2 + 20.35s + 16)
(9.19)

This ˆ̄go(s) is still BIBO stable, but ˆ̄go(0) = (6 · 23 · 2.1)/(23 · 16) = 0.7875 �= 1. If the
reference input is a unit step function, the output will approach 0.7875 as t → ∞. There is
a tracking error of over 20%. Thus the overall system will no longer track any step reference
input after the plant parameter variations, and the design is said to be nonrobust.

In this subsection, we discuss a design that can achieve robust tracking and disturbance
rejection. Consider the system shown in Fig. 9.2, in which a disturbance enters at the plant
input as shown. The problem is to design an overall system so that the plant output y will track
asymptotically a class of reference signal r even with the presence of the disturbance and with
plant parameter variations. This is called robust tracking and disturbance rejection.

Before proceeding, we discuss the nature of the reference signal r(t) and the disturbance
w(t). If both r(t) and w(t) approach zero as t → ∞, then the design is automatically

278 POLE PLACEMENT AND MODEL MATCHING

~

Figure 9.2 Robust tracking and disturbance rejection.

achieved if the overall system in Fig. 9.2 is designed to be BIBO stable. To exclude this
trivial case, we assume that r(t) and w(t) do not approach zero as t → ∞. If we have
no knowledge whatsoever about the nature of r(t) and w(t), it is not possible to achieve
asymptotic tracking and disturbance rejection. Therefore we need some information of r(t)

and w(t) before carrying out the design. We assume that the Laplace transforms of r(t) and
w(t) are given by

r̂(s) = L[r(t)] = Nr(s)

Dr(s)
ŵ(s) = L[w(t)] = Nw(s)

Dw(s)
(9.20)

where Dr(s) and Dw(s) are known polynomials; however, Nr(s) and Nw(s) are unknown
to us. For example, if r(t) is a step function with unknown magnitude a, then r̂(s) = a/s.
Suppose the disturbance is w(t) = b + c sin(ωot + d); it consists of a constant biasing with
unknown magnitude b and a sinusoid with known frequency ωo but unknown amplitude c and
phase d . Then we have ŵ(s) = Nw(s)/s(s2 +ω2

o). Let φ(s) be the least common denominator
of the unstable poles of r̂(s) and ŵ(s). The stable poles are excluded because they have no
effect on y as t → ∞. Thus all roots of φ(s) have zero or positive real parts. For the examples
just discussed, we have φ(s) = s(s2 + ω2

o).

� Theorem 9.3

Consider the unity-feedback system shown in Fig. 9.2(a) with a strictly proper plant transfer function
ĝ(s) = N(s)/D(s). It is assumed that D(s) and N(s) are coprime. The reference signal r(t) and
disturbance w(t) are modeled as r̂(s) = Nr(s)/Dr(s) and ŵ(s) = Nw(s)/Dw(s). Let φ(s) be the
least common denominator of the unstable poles of r̂(s) and ŵ(s). If no root of φ(s) is a zero of ĝ(s),
then there exists a proper compensator such that the overall system will track r(t) and reject w(t), both
asymptotically and robustly.

Proof: If no root of φ(s) is a zero of ĝ(s) = N(s)/D(s), then D(s)φ(s) and N(s) are
coprime. Thus there exists a proper compensator B(s)/A(s) such that the polynomial
F(s) in

A(s)D(s)φ(s) + B(s)N(s) = F(s)

has any desired roots, in particular, has all roots lying inside the sector shown in Fig.
8.3(a). We claim that the compensator

9.2 Unity-Feedback Configuration—Pole Placement 279

C(s) = B(s)

A(s)φ(s)

as shown in Fig. 9.2(a) will achieve the design. Let us compute the transfer function from
w to y:

ĝyw(s) = N(s)/D(s)

1 + (B(s)/A(s)φ(s))(N(s)/D(s))

= N(s)A(s)φ(s)

A(s)D(s)φ(s) + B(s)N(s)
= N(s)A(s)φ(s)

F (s)

Thus the output excited by w(t) equals

ŷw(s) = ĝyw(s)ŵ(s) = N(s)A(s)φ(s)

F (s)

Nw(s)

Dw(s)
(9.21)

Because all unstable roots of Dw(s) are canceled by φ(s), all poles of ŷw(s) have negative
real parts. Thus we have yw(t) → 0 as t → ∞. In other words, the response excited by
w(t) is asymptotically suppressed at the output.

Next we compute the output ŷr (s) excited by r̂(s):

ŷr (s) = ĝyr (s)r̂(s) = B(s)N(s)

A(s)D(s)φ(s) + B(s)N(s)
r̂(s)

Thus we have

ê(s) := r̂(s) − ŷr (s) = (1 − ĝyr (s))r̂(s)

= A(s)D(s)φ(s)

F (s)

Nr(s)

Dr(s)
(9.22)

Again all unstable roots of Dr(s) are canceled by φ(s) in (9.22). Thus we conclude
r(t) − yr(t) → 0 as t → ∞. Because of linearity, we have y(t) = yw(t) + yr(t) and
r(t) − y(t) → 0 as t → ∞. This shows asymptotic tracking and disturbance rejection.
From (9.21) and (9.22), we see that even if the parameters of D(s), N(s), A(s), and B(s)

change, as long as the overall system remains BIBO stable and the unstable roots of Dr(s)

and Dw(s) are canceled by φ(s), the system still achieve tracking and rejection. Thus the
design is robust. Q.E.D.

This robust design consists of two steps. First find a model 1/φ(s) of the reference signal
and disturbance and then carry out pole-placement design. Inserting the model inside the loop
is referred to as the internal model principle. If the model 1/φ(s) is not located in the forward
path from w to y and from r to e, then φ(s) will appear in the numerators of ĝyw(s) and ĝer (s)

(see Problem 9.7) and cancel the unstable poles of ŵ(s) and r̂(s), as shown in (9.21) and
(9.22). Thus the design is achieved by unstable pole–zero cancellations of φ(s). It is important
to mention that there are no unstable pole–zero cancellations in the pole-placement design and
the resulting unity-feedback system is totally stable, which will be defined in Section 9.3. Thus
the internal model principle can be used in practical design.

In classical control system design, if a plant transfer function or a compensator transfer
function is of type 1 (has one pole at s = 0), and the unity-feedback system is designed to be

280 POLE PLACEMENT AND MODEL MATCHING

BIBO stable, then the overall system will track asymptotically and robustly any step reference
input. This is a special case of the internal model principle.

Example 9.3 Consider the plant in Example 9.2 or ĝ(s) = (s − 2)/(s2 − 1). Design a
unity-feedback system with a set of desired poles to track robustly any step reference input.

First we introduce the internal model 1/φ(s) = 1/s. Then B(s)/A(s) in Fig. 9.2(a) can
be solved from

A(s)D(s)φ(s) + B(s)N(s) = F(s)

Because D̃(s) := D(s)φ(s) has degree 3, we may select A(s) and B(s) to have degree 2. Then
F(s) has degree 5. If we select five desired poles as −2, −2 ± j1, and −1 ± j2, then we have

F(s) = (s + 2)(s2 + 4s + 5)(s2 + 2s + 5)

= s5 + 8s4 + 30s3 + 66s2 + 85s + 50

Using the coefficients of D̃(s) = (s2−1)s = 0−s+0·s2+s3 and N(s) = −2+s+0·s2+0·s3,
we form

[A0 B0 A1 B1 A2 B2]




0 −1 0 1 0 0

−2 1 0 0 0 0

· · · · · · · · · · · · · · · · · ·
0 0 −1 0 1 0

0 −2 1 0 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 −1 0 1

0 0 −2 1 0 0




= [50 85 66 30 8 1]

Its solution is [127.3 −25 0 −118.7 1 −96.3]. Thus we have

B(s)

A(s)
= −96.3s2 − 118.7s − 25

s2 + 127.3

and the compensator is

C(s) = B(s)

A(s)φ(s)
= −96.3s2 − 118.7s − 25

(s2 + 127.3)s

Using this compensator of degree 3, the unity-feedback system in Fig. 9.2(a) will track robustly
any step reference input and has the set of desired poles.

9.2.3 Embedding Internal Models

The design in the preceding subsection was achieved by first introducing an internal model
1/φ(s) and then designing a properB(s)/A(s). Thus the compensatorB(s)/A(s)φ(s) is always
strictly proper. In this subsection, we discuss a method of designing a biproper compensator
whose denominator will include the internal model as a factor as shown in Fig. 9.2(b). By so
doing, the degree of compensators can be reduced.

9.2 Unity-Feedback Configuration—Pole Placement 281

Consider

A(s)D(s) + B(s)N(s) = F(s)

If deg D(s) = n and if deg A(s) = n − 1, then the solution A(s) and B(s) is unique. If
we increase the degree of A(s) by one, then solutions are not unique, and there is one free
parameter we can select. Using the free parameter, we may be able to include an internal model
in the compensator, as the next example illustrates.

Example 9.4 Consider again the design problem in Example 9.2. The degree of D(s) is 2. If
A(s) has degree 1, then the solution is unique. Let us select A(s) to have degree 2. Then F(s)

must have degree 4 and can be selected as

F(s) = (s2 + 4s + 5)(s2 + 2s + 5) = s4 + 6s3 + 18s2 + 30s + 25

We form

[A0 B0 A1 B1 A2 B2]




−1 0 1 0 0

−2 1 0 0 0

· · · · · · · · · · · · · · ·
0 −1 0 1 0

0 −2 1 0 0

· · · · · · · · · · · · · · ·
0 0 −1 0 1

0 0 −2 1 0




= [25 30 18 6 1] (9.23)

In order for the proper compensator

C(s) = B0 + B1s + B2s
2

A0 + A1s + A2s2

to have 1/s as a factor, we require A0 = 0. There are five equations and six unknowns in
(9.23). Thus one of the unknowns can be arbitrarily assigned. Let us select A0 = 0. This is
equivalent to deleting the first row of the 6 × 5 matrix in (9.23). The remaining 5 × 5 matrix
is nonsingular, and the remaining five unknowns can be solved uniquely. The solution is

[A0 B0 A1 B1 A2 B2] = [0 − 12.5 34.8 − 38.7 1 − 28.8]

Thus the compensator is

C(s) = B(s)

A(s)
= −28.8s2 − 38.7s − 12.5

s2 + 34.8s

This biproper compensator can achieve robust tracking. This compensator has degree 2, one
less than the one obtained in Example 9.3. Thus this is a better design.

In the preceding example, we mentioned that one of the unknowns in (9.23) can be
arbitrarily assigned. This does not mean that any one of them can be arbitrarily assigned. For
example, if we assign A2 = 0 or, equivalently, delete the fifth row of the 6×5 matrix in (9.23),
then the remaining square matrix is singular and no solution may exist. In Example 9.4, if we

282 POLE PLACEMENT AND MODEL MATCHING

select A0 = 0 and if the remaining equation in (9.23) does not have a solution, then we must
increase the degree of the compensator and repeat the design. Another way to carry out the
design is to find the general solution of (9.23). Using Corollary 3.2, we can express the general
solution as

[A0 B0 A1 B1 A2 B2] = [1 − 13 34.3 − 38.7 1 − 28.3] + α[2 − 1 − 1 0 0 1]

with one free parameter α. If we select α = −0.5, then A0 = 0 and we will obtain the same
compensator.

We give one more example and discuss a different method of embedding φ(s) in the
compensator.

Example 9.5 Consider the unity-feedback system in Fig. 9.2(b) with ĝ(s) = 1/s. Design a
proper compensator C(s) = B(s)/A(s) so that the system will track asymptotically any step
reference input and reject disturbance w(t) = a sin(2t + θ) with unknown a and θ .

In order to achieve the design, the polynomial A(s) must contain the disturbance model
(s2 + 4). Note that the reference model s is not needed because the plant already contains the
factor. Consider

A(s)D(s) + B(s)N(s) = F(s)

For this equation, we have deg D(s) = n = 1. Thus if m = n − 1 = 0, then the solution is
unique and we have no freedom in assigning A(s). If m = 2, then we have two free parameters
that can be used to assign A(s). Let

A(s) = Ã0(s
2 + 4) B(s) = B0 + B1s + B2s

2

Define

D̃(s) = D(s)(s2 + 4) = D̃0 + D̃1s + D̃2s
2 + D̃3s

3 = 0 + 4s + 0 · s2 + s3

We write A(s)D(s) + B(s)N(s) = F(s) as

Ã0D̃(s) + B(s)N(s) = F(s)

Equating its coefficients, we obtain

[Ã0 B0 B1 B2]




D̃0 D̃1 D̃2 D̃3

N0 N1 0 0

0 N0 N1 0

0 0 N0 N1


 = [F0 F1 F2 F3]

For this example, if we select

F(s) = (s + 2)(s2 + 2s + 2) = s3 + 4s2 + 6s + 4

then the equation becomes

[Ã0 B0 B1 B2]




0 4 0 1

1 0 0 0

0 1 0 0

0 0 1 1


 = [4 6 4 1]

9.3 Implementable Transfer Functions 283

Its solution is [1 4 2 4]. Thus the compensator is

C(s) = B(s)

A(s)
= 4s2 + 2s + 4

1 × (s2 + 4)
= 4s2 + 2s + 4

s2 + 4

This biproper compensator will place the poles of the unity-feedback system in the assigned
positions, track any step reference input, and reject the disturbance a sin(2t + θ), both
asymptotically and robustly.

9.3 Implementable Transfer Functions

Consider again the design problem posed in Fig. 8.1 with a given plant transfer function
ĝ(s). Now the problem is the following: given a desired overall transfer function ĝo(s), find
a feedback configuration and compensators so that the transfer function from r to y equals
ĝo(s). This is called the model matching problem. This problem is clearly different from the
pole-placement problem. In pole placement, we specify only poles; its design will introduce
some zeros over which we have no control. In model matching, we specify not only poles but
also zeros. Thus model matching can be considered as pole-and-zero placement and should
yield a better design.

Given a proper plant transfer function ĝ(s), we claim that ĝo(s) = 1 is the best possible
overall system we can design. Indeed, if ĝo(s) = 1, then y(t) = r(t) for t ≥ 0 and for any
r(t). Thus the overall system can track immediately (not asymptotically) any reference input
no matter how erratic r(t) is. Note that although y(t) = r(t), the power levels at the reference
input and plant output may be different. The reference signal may be provided by turning a
knob by hand; the plant output may be the angular position of an antenna with weight over
several tons.

Although ĝo(s) = 1 is the best overall system, we may not be able to match it for a given
plant. The reason is that in matching or implementation, there are some physical constraints
that every overall system should meet. These constraints are listed in the following:

1. All compensators used have proper rational transfer functions.

2. The configuration selected has no plant leakage in the sense that all forward paths from r

to y pass through the plant.

3. The closed-loop transfer function of every possible input–output pair is proper and BIBO
stable.

Every compensator with a proper rational transfer function can be implemented using the
op-amp circuit elements shown in Fig. 2.6. If a compensator has an improper transfer function,
then its implementation requires the use of pure differentiators, which are not standard op-
amp circuit elements. Thus compensators used in practice are often required to have proper
transfer functions. The second constraint requires that all power passes through the plant and
no compensator be introduced in parallel with the plant. All configurations in Fig. 9.1 meet
this constraint. In practice, noise and disturbance may exist in every component. For example,
noise may be generated in using potentiometers because of brush jumps and wire irregularity.
The load of an antenna may change because of gusting or air turbulence. These will be modeled
as exogenous inputs entering the input and output terminals of every block as shown in Fig. 9.3.

284 POLE PLACEMENT AND MODEL MATCHING

Clearly we cannot disregard the effects of these exogenous inputs on the system. Although the
plant output is the signal we want to control, we should be concerned with all variables inside
the system. For example, suppose the closed-loop transfer function from r to u is not BIBO
stable; then any r will excite an unbounded u and the system will either saturate or burn out. If
the closed-loop transfer function from n1 to u is improper, and if n1 contains high-frequency
noise, then the noise will be greatly amplified at u and the amplified noise will drive the system
crazy. Thus the closed-loop transfer function of every possible input–output pair of the overall
system should be proper and BIBO stable. An overall system is said to be well posed if the
closed-loop transfer function of every possible input–output pair is proper; it is totally stable
if the closed-loop transfer function of every possible input–output pair is BIBO stable.

Total stability can readily be met in design. If the overall transfer function from r to y is
BIBO stable and if there is no unstable pole–zero cancellation in the system, then the overall
system is totally stable. For example, consider the system shown in Fig. 9.3(a). The overall
transfer function from r to y is

ĝyr (s) = 1

s + 1

which is BIBO stable. However, the system is not totally stable because it involves an
unstable pole–zero cancellation of (s − 2). The closed-loop transfer function from n2 to y

is s/(s − 2)(s + 1), which is not BIBO stable. Thus the output will grow unbounded if noise
n2, even very small, enters the system. Thus we require BIBO stability not only of ĝo(s) but
also of every possible closed-loop transfer function. Note that whether or not ĝ(s) and C(s)

are BIBO stable is immaterial.
The condition for the unity-feedback configuration in Fig. 9.3 to be well posed is

C(∞)ĝ(∞) �= −1 (Problem 9.9). This can readily be established by using Mason’s formula.
See Reference [7, pp. 200–201]. For example, for the unity-feedback system in Fig. 9.3(b),
we have C(∞)ĝ(∞) = (−1/2) × 2 = −1. Thus the system is not well posed. Indeed, the
closed-loop transfer function from r to y is

ĝo(s) = (−s + 2)(2s + 2)

s + 3

which is improper. The condition for the two-parameter configuration in Fig. 9.1(d) to be well
posed is ĝ(∞)C2(∞) �= −1. In the unity-feedback and two-parameter configurations, if ĝ(s)

is strictly proper or ĝ(∞) = 0, then ĝ(∞)C(∞) = 0 �= −1 for any proper C(s) and the overall
systems will automatically be well posed. In conclusion, total stability and well-posedness can
easily be met in design. Nevertheless, they do impose some restrictions on ĝo(s).

Figure 9.3 Feedback systems.

9.3 Implementable Transfer Functions 285

Definition 9.1 Given a plant with proper transfer function ĝ(s), an overall transfer
function ĝo(s) is said to be implementable if there exists a no-plant-leakage configuration
and proper compensators so that the transfer function from r to y in Fig. 8.1 equals
ĝo(s) and the overall system is well posed and totally stable.

If an overall transfer function ĝo(s) is not implementable, then no matter what configura-
tion is used to implement it, the design will violate at least one of the aforementioned constraints.
Therefore, in model matching, the selected ĝo(s) must be implementable; otherwise, it is not
possible to implement it in practice.

� Theorem 9.4

Consider a plant with proper transfer function ĝ(s). Then ĝo(s) is implementable if and only if ĝo(s)
and

t̂ (s) := ĝo(s)

ĝ(s)
(9.24)

are proper and BIBO stable.

� Corollary 9.4

Consider a plant with proper transfer function ĝ(s) = N(s)/D(s). Then ĝo(s) = E(s)/F (s) is
implementable if and only if

1. All roots of F(s) have negative real parts (F(s) is Hurwitz).

2. Deg F(s) − deg E(s) ≥ deg D(s) − deg N(s) (pole–zero excess inequality).

3. All zeros of N(s) with zero or positive real parts are retained in E(s) (retainment of nonminimum-
phase zeros).

We first develop Corollary 9.4 from Theorem 9.4. If ĝo(s) = E(s)/F (s) is BIBO stable,
then all roots of F(s) have negative real parts. This is condition (1). We write (9.24) as

t̂ (s) = ĝo(s)

ĝ(s)
= E(s)D(s)

F (s)N(s)

The condition for t̂ (s) to be proper is

deg F(s) + deg N(s) ≥ deg E(s) + deg D(s)

which implies (2). In order for t̂ (s) to be BIBO stable, all roots of N(s) with zero or positive real
parts must be canceled by the roots of E(s). Thus E(s) must contain the nonminimum-phase
zeros of N(s). This is condition (3). Thus Corollary 9.4 follows directly Theorem 9.4.

Now we show the necessity of Theorem 9.4. For any configuration that has no plant
leakage, if the closed-loop transfer function from r to y is ĝo(s), then we have

ŷ(s) = ĝo(s)r̂(s) = ĝ(s)û(s)

286 POLE PLACEMENT AND MODEL MATCHING

which implies

û(s) = ĝo(s)

ĝ(s)
r̂(s) = t̂ (s)r̂(s)

Thus the closed-loop transfer function from r to u is t̂ (s). Total stability requires every closed-
loop transfer function to be BIBO stable. Thus ĝo(s) and t̂ (s) must be BIBO stable. Well-
posedness requires every closed-loop transfer function to be proper. Thus ĝo(s) and t̂ (s) must
be proper. This establishes the necessity of the theorem. The sufficiency of the theorem will
be established constructively in the next subsection. Note that if ĝ(s) and t̂ (s) are proper, then
ĝo(s) = ĝ(s)t̂(s) is proper. Thus the condition for ĝo(s) to be proper can be dropped from
Theorem 9.4.

In pole placement, the design will always introduce some zeros over which we have no
control. In model matching, other than retaining nonminimum-phase zeros and meeting the
pole–zero excess inequality, we have complete freedom in selecting poles and zeros: any pole
inside the open left-half s-plane and any zero in the entire s-plane. Thus model matching
can be considered as pole-and-zero placement and should yield a better overall system than
pole-placement design.

Given a plant transfer function ĝ(s), how to select an implementable model ĝo(s) is not
a simple problem. For a discussion of this problem, see Reference [7, Chapter 9].

9.3.1 Model Matching—Two-Parameter Configuration

This section discusses the implementation of ĝo(s) = ĝ(s)t̂(s). Clearly, if C(s) = t̂ (s) in Fig.
9.1(a), then the open-loop configuration has ĝo(s) as its transfer function. This implementation
may involve unstable pole–zero cancellations and, consequently, may not be totally stable.
Even if it is totally stable, the configuration can be very sensitive to plant parameter variations.
Therefore the open-loop configuration should not be used. The unity-feedback configuration in
Fig. 9.1(b) can be used to achieve every pole placement; however it cannot be used to achieve
every model matching, as the next example shows.

Example 9.6 Consider a plant with transfer function ĝ(s) = (s −2)/(s2 −1). We can readily
show that

ĝo(s) = −(s − 2)

s2 + 2s + 2
(9.25)

is implementable. Because ĝo(0) = 1, the plant output will track asymptotically any step
reference input. Suppose we use the unity-feedback configuration with p = 1 to implement
ĝo(s). Then from

ĝo(s) = C(s)ĝ(s)

1 + C(s)ĝ(s)

we can compute the compensator as

C(s) = ĝo(s)

ĝ(s)[1 − ĝo(s)]
= −(s2 − 1)

s(s + 3)

9.3 Implementable Transfer Functions 287

This compensator is proper. However, the tandem connection of C(s) and ĝ(s) involves the
pole–zero cancellation of (s2 − 1) = (s + 1)(s − 1). The cancellation of the stable pole s + 1
will not cause any serious problem in the overall system. However, the cancellation of the
unstable pole s − 1 will make the overall system not totally stable. Thus the implementation
is not acceptable.

Model matching in general involves some pole–zero cancellations. The same situation
arises in state-feedback state-estimator design; all eigenvalues of the estimator are not con-
trollable from the reference input and are canceled in the overall transfer function. However,
because we have complete freedom in selecting the eigenvalues of the estimator, if we select
them properly, the cancellation will not cause any problem in design. In using the unity-
feedback configuration in model matching, as we saw in the preceding example, the canceled
poles are dictated by the plant transfer function. Thus, if a plant transfer function has poles with
positive real parts, the cancellation will involve unstable poles. Therefore the unity-feedback
configuration, in general, cannot be used in model matching.

The open-loop and the unity-feedback configurations in Figs. 9.1(a) and 9.1(b) have one
degree of freedom and cannot be used to achieve every model matching. The configurations
in Figs. 9.1(c) and 9.1(d) both have two degrees of freedom. In using either configuration,
we have complete freedom in assigning canceled poles; therefore both can be used to achieve
every model matching. Because the two-parameter configuration in Fig. 9.1(d) seems to be
more natural and more suitable for practical implementation, we discuss only that configuration
here. For model matching using the configuration in Fig. 9.1(c), see Reference [6].

Consider the two-parameter configuration in Fig. 9.1(d). Let

C1(s) = L(s)

A1(s)
C2(s) = M(s)

A2(s)

where L(s), M(s), A1(s), and A2(s) are polynomials. We call C1(s) the feedforward com-
pensator and C2(s) the feedback compensator. In general, A1(s) and A2(s) need not be the
same. It turns out that even if they are chosen to be the same, the configuration can still be used
to achieve any model matching. Furthermore, a simple design procedure can be developed.
Therefore we assume A1(s) = A2(s) = A(s) and the compensators become

C1(s) = L(s)

A(s)
C2(s) = M(s)

A(s)
(9.26)

The transfer function from r to y in Fig. 9.1(d) then becomes

ĝo(s) = C1(s)
ĝ(s)

1 + ĝ(s)C2(s)
= L(s)

A(s)

N(s)

D(s)

1 + N(s)

D(s)

M(s)

A(s)

= L(s)N(s)

A(s)D(s) + M(s)N(s)
(9.27)

Thus in model matching, we search for proper L(s)/A(s) and M(s)/A(s) to meet

ĝo(s) = E(s)

F (s)
= L(s)N(s)

A(s)D(s) + M(s)N(s)
(9.28)

288 POLE PLACEMENT AND MODEL MATCHING

Note that the two-parameter configuration has no plant leakage. If the plant transfer function
ĝ(s) is strictly proper as assumed and if C2(s) = M(s)/A(s) is proper, then the overall
system is automatically well posed. The question of total stability will be discussed in the next
subsection.

Problem Given ĝ(s) = N(s)/D(s), where N(s) and D(s) are coprime and deg
N(s) < degD(s) = n, and given an implementable ĝo(s) = E(s)/F (s), find proper
L(s)/A(s) and M(s)/A(s) to meet (9.28).

� Procedure 9.1

1. Compute

ĝo(s)

N(s)
= E(s)

F (s)N(s)
=:

Ē(s)

F̄ (s)
(9.29)

where Ē(s) and F̄ (s) are coprime. Since E(s) and F(s) are implicitly assumed to be coprime,
common factors may exist only between E(s) and N(s). Cancel all common factors between them
and denote the rest as Ē(s) and F̄ (s). Note that if E(s) = N(s), then F̄ (s) = F(s) and Ē(s) = 1.
Using (9.29), we rewrite (9.28) as

ĝo(s) = Ē(s)N(s)

F̄ (s)
= L(s)N(s)

A(s)D(s) + M(s)N(s)
(9.30)

From this equation, we may be tempted to set L(s) = Ē(s) and solve for A(s) and M(s) from
F̄ (s) = A(s)D(s) + M(s)N(s). However, no proper C2(s) = M(s)/A(s) may exist in the
equation. See Problem 9.1. Thus we need some additional manipulation.

2. Introduce an arbitrary Hurwitz polynomial F̂ (s) such that the degree of F̄ (s)F̂ (s) is 2n − 1 or
higher. In other words, if deg F̄ (s) = p, then deg F̂ (s) ≥ 2n − 1 − p. Because the polynomial

F̂ (s) will be canceled in the design, its roots should be chosen to lie inside the sector shown in Fig.
8.3(a).

3. Rewrite (9.30) as

ĝo(s) = Ē(s)F̂ (s)N(s)

F̄ (s)F̂ (s)
= L(s)N(s)

A(s)D(s) + M(s)N(s)
(9.31)

Now we set

L(s) = Ē(s)F̂ (s) (9.32)

and solve A(s) and M(s) from

A(s)D(s) + M(s)N(s) = F̄ (s)F̂ (s) (9.33)

If we write

A(s) = A0 + A1s + A2s
2 + · · · + Amsm

M(s) = M0 + B1s + M2s
2 + · · · + Mmsm

F̄ (s)F̂ (s) = F0 + F1s + F2s
2 + · · · + Fn+msn+m

9.3 Implementable Transfer Functions 289

with m ≥ n − 1, then A(s) and M(s) can be obtained by solving

[A0 M0 A1 M1 · · · Am Mm]Sm = [F0 F1 F2 · · · Fn+m] (9.34)

with

Sm :=




D0 D1 · · · Dn 0 · · · 0

N0 N1 · · · Nn 0 · · · 0

· ·
0 D0 · · · Dn−1 Dn · · · 0

0 N0 · · · Nn−1 Nn · · · 0

· ·
...

...
. . .

...
...

. . .
...

· ·
0 0 · · · 0 D0 · · · Dn

0 0 · · · 0 N0 · · · Nn




The computed compensators L(s)/A(s) and M(s)/A(s) are proper.

We justify the procedure. By introducing F̂ (s), the degree of F̄ (s)F̂ (s) is 2n−1 or higher
and, following Theorem 9.2, solutions A(s) and M(s) with deg M(s) ≤ deg A(s) = m and
m ≥ n− 1 exist in (9.34) for any F̄ (s)F̂ (s). Thus the compensator M(s)/A(s) is proper. Note
that if we do not introduce F̂ (s), proper compensator M(s)/A(s) may not exist in (9.34).

Next we show deg L(s) ≤ deg A(s). Applying the pole–zero excess inequality to (9.31)
and using (9.32), we have

deg (F̄ (s)F̂ (s)) − deg N(s) − deg L(s) ≥ deg D(s) − deg N(s)

which implies

deg L(s) ≤ deg (F̄ (s)F̂ (s)) − deg D(s) = deg A(s)

Thus the compensator L(s)/A(s) is proper.

Example 9.7 Consider the model matching problem studied in Example 9.6. That is, given
ĝ(s) = (s − 2)/(s2 − 1), match ĝo(s) = −(s − 2)/(s2 + 2s + 2). We implement it in the
two-parameter configuration shown in Fig. 9.1(d). First we compute

ĝo(s)

N(s)
= −(s − 2)

(s2 + 2s + 2)(s − 2)
= −1

s2 + 2s + 2
=:

Ē(s)

F̄ (s)

Because the degree of F̄ (s) is 2, we select arbitrarily F̂ (s) = s + 4 so that the degree of
F̄ (s)F̂ (s) is 3 = 2n − 1. Thus we have

L(s) = Ē(s)F̂ (s) = −(s + 4) (9.35)

and A(s) and M(s) can be solved from

A(s)D(s) + M(s)N(s) = F̄ (s)F̂ (s) = (s2 + 2s + 2)(s + 4)

= s3 + 6s2 + 10s + 8

290 POLE PLACEMENT AND MODEL MATCHING

or

[A0 M0 A1 M1]




−1 0 1 0

−2 1 0 0

· · · · · · · · · · · ·
0 −1 0 1

0 −2 1 0


 = [8 10 6 1]

The solution is A0 = 18, A1 = 1, M0 = −13, and M1 = −12. Thus we have A(s) = 18 + s

and M(s) = −13 − 12s and the compensators are

C1(s) = L(s)

A(s)
= −(s + 4)

s + 18
C2(s) = M(s)

A(s)
= −(12s + 13)

s + 18

This completes the design. Note that, because ĝo(0) = 1, the output of the feedback system
will track any step reference input.

Example 9.8 Given ĝ(s) = (s − 2)/(s2 − 1), match

ĝo(s) = −(s − 2)(4s + 2)

(s2 + 2s + 2)(s + 2)
= −4s2 + 6s + 4

s3 + 4s2 + 6s + 4

This ĝo(s) is BIBO stable and has the property ĝo(0) = 1 and ĝ′
o(s) = 0; thus the overall

system will track asymptotically not only any step reference input but also any ramp input.
See Problems 9.13 and 9.14. This ĝo(s) meets all three conditions in Corollary 9.4; thus it is
implementable. We use the two-parameter configuration. First we compute

ĝo(s)

N(s)
= −(s − 2)(4s + 2)

(s2 + 2s + 2)(s + 2)(s − 2)
= −(4s + 2)

s3 + 4s2 + 6s + 4
=:

Ē(s)

F̄ (s)

Because the degree of F̄ (s) is 3, which equals 2n − 1 = 3, there is no need to introduce F̂ (s)

and we set F̂ (s) = 1. Thus we have

L(s) = F̂ (s)Ē(s) = −(4s + 2)

and A(s) and M(s) can be solved from

[A0 M0 A1 M1]




−1 0 1 0

−2 1 0 0

· · · · · · · · · · · ·
0 −1 0 1

0 −2 1 0


 = [4 6 4 1]

as A0 = 1, A1 = 34/3, M0 = −23/3, and M1 = −22/3. Thus the compensators are

C1(s) = −(4s + 2)

s + 34/3
C2(s) = −(22s + 23)

3s + 34

This completes the design. Note that this design does not involve any pole–zero cancellation
because F̂ (s) = 1.

9.3 Implementable Transfer Functions 291

9.3.2 Implementation of Two-Parameter Compensators

Given a plant with transfer function ĝ(s) and an implementable model ĝo(s), we can implement
the model in the two-parameter configuration shown in Fig. 9.1(d) and redrawn in Fig. 9.4(a).
The compensators C1(s) = L(s)/A(s) and C2(s) = M(s)/A(s) can be obtained by using
Procedure 9.1. To complete the design, the compensators must be built or implemented. This
is discussed in this subsection.

Consider the configuration in Fig. 9.4(a). The denominator A(s) of C1(s) is obtained by
solving the compensator equation in (9.33) and may or may not be a Hurwitz polynomial. See
Problem 9.12. If it is not a Hurwitz polynomial and if we implement C1(s) as shown in Fig.
9.4(a), then the output of C1(s) will grow without bound and the overall system is not totally
stable. Therefore, in general, we should not implement the two compensators as shown in Fig.
9.4(a). If we move C2(s) outside the loop as shown in Fig. 9.4(b), then the design will involve
the cancellation of M(s). Because M(s) is also obtained by solving (9.33), we have no direct
control of M(s). Thus the design is in general not acceptable. If we move C1(s) inside the
loop, then the configuration becomes the one shown in Fig. 9.4(c). We see that the connection
involves the pole–zero cancellation of L(s) = F̂ (s)Ē(s). We have freedom in selecting F̂ (s).
The polynomial Ē(s) is part of E(s), which, other than the nonminimum-phase zeros of N(s),
we can also select. The nonminimum-phase zeros, however, are completely canceled in Ē(s).
Thus L(s) can be Hurwitz3 and the implementation in Fig. 9.4(c) can be totally stable and is

Figure 9.4 Two-degrees-of-freedom configurations.

3. This may not be true in the multivariable case.

292 POLE PLACEMENT AND MODEL MATCHING

acceptable. However, because the two compensators L(s)/A(s) and M(s)/L(s) have different
denominators, their implementations require a total of 2m integrators. We discuss next a better
implementation that requires only m integrators and involves only the cancellation of F̂ (s).

Consider

û(s) = C1(s)r̂(s) − C2(s)ŷ(s) = L(s)

A(s)
r̂(s) − M(s)

A(s)
ŷ(s)

= A−1(s)[L(s) − M(s)]

[
r̂(s)

ŷ(s)

]

This can be plotted as shown in Fig. 9.4(d). Thus we can consider the two compensators as a
single compensator with two inputs and one output with transfer matrix

C(s) = [C1(s) − C2(s)] = A−1(s)[L(s) − M(s)] (9.36)

If we find a minimal realization of (9.36), then its dimension is m and the two compensators
can be implemented using only m integrators. As we can see from (9.31), the design involves
only the cancellation of F̂ (s). Thus the implementation in Fig. 9.4(d) is superior to the one in
Fig. 9.4(c). We see that the four configurations in Fig. 9.4 all have two degrees of freedom and
are mathematically equivalent. However, they can be different in actual implementation.

Example 9.9 Implement the compensators in Example 9.8 using an op-amp circuit. We write

û(s) = C1(s)r̂(s) − C2(s)ŷ(s) =
[−(4s + 2)

s + 11.33

7.33s + 7.67

s + 11.33

] [
r̂(s)

ŷ(s)

]

=
(

[−4 7.33] + 1

s + 11.33
[43.33 − 75.38]

)[
r̂(s)

ŷ(s)

]

Its state-space realization is, using the formula in Problem 4.10,

ẋ = −11.33x + [43.33 − 75.38]

[
r

y

]

u = x + [−4 7.33]

[
r

y

]

(See Problem 4.14.) This one-dimensional state equation can be realized as shown in Fig. 9.5.
This completes the implementation of the compensators.

9.4 Multivariable Unity-Feedback Systems

This section extends the pole placement discussed in Section 9.2 to the multivariable case.
Consider the unity-feedback system shown in Fig. 9.6. The plant has p inputs and q outputs
and is described by a q × p strictly proper rational matrix Ĝ(s). The compensator C(s) to be
designed must have q inputs and p outputs in order for the connection to be possible. Thus
C(s) is required to be a p × q proper rational matrix. The matrix P is a q × q constant gain
matrix. For the time being, we assume P = Iq . Let the transfer matrix from r to y be denoted
by Ĝo(s), a q × q matrix. Then we have

9.4 Multivariable Unity-Feedback Systems 293

Figure 9.5 Op-amp circuit
implementation.

Figure 9.6 Multivariable unity feedback system with P = Iq .

Ĝo(s) = [Iq + Ĝ(s)C(s)]−1Ĝ(s)C(s)

= Ĝ(s)C(s)[Iq + Ĝ(s)C(s)]−1

= Ĝ(s)[Ip + C(s)Ĝ(s)]−1C(s) (9.37)

The first equality is obtained from ŷ(s) = Ĝ(s)C(s)[r̂(s) − ŷ(s)]; the second one from
ê(s) = r̂(s) − Ĝ(s)C(s)ê(s); and the third one from û(s) = C(s)[r̂(s) − Ĝ(s)û(s)]. They can
also be verified directly. For example, pre- and postmultiplying by [Iq + Ĝ(s)C(s)] in the first
two equations yield

Ĝ(s)C(s)[Iq + Ĝ(s)C(s)] = [Iq + Ĝ(s)C(s)]Ĝ(s)C(s)

which is an identity. This establishes the second equality. The third equality can similarly be
established.

Let Ĝ(s) = N(s)D−1(s) be a right coprime fraction and let C(s) = A−1(s)B(s) be a left
fraction to be designed. Then (9.37) implies

Ĝo(s) = N(s)D−1(s)[I + A−1(s)B(s)N(s)D−1(s)]−1A−1(s)B(s)

= N(s)D−1(s)
{
A−1(s)[A(s)D(s) + B(s)N(s)]D−1(s)

}−1
A−1(s)B(s)

= N(s))[A(s)D(s) + B(s)N(s)]−1B(s)

= N(s)F−1(s)B(s) (9.38)

294 POLE PLACEMENT AND MODEL MATCHING

where

A(s)D(s) + B(s)N(s) = F(s) (9.39)

It is a polynomial matrix equation. Thus the design problem can be stated as follows: given
p × p D(s) and q × p N(s) and an arbitrary p × p F(s), find p × p A(s) and p × q B(s) to
meet (9.39). This is the matrix version of the polynomial compensator equation in (9.12).

� Theorem 9.M1

Given polynomial matrices D(s) and N(s), polynomial matrix solutions A(s) and B(s) exist in (9.39)
for any polynomial matrix F(s) if and only if D(s) and N(s) are right coprime.

Suppose D(s) and N(s) are not right coprime, then there exists a nonunimodular polyno-
mial matrix R(s) such that D(s) = D̂(s)R(s) and N(s) = N̂(s)R(s). Then F(s) in (9.39) must
be of the form F̂(s)R(s), for some polynomial matrix F̂(s). Thus if F(s) cannot be expressed
in such a form, no solutions exist in (9.39). This shows the necessity of the theorem. If D(s)

and N(s) are right coprime, there exist polynomial matrices Ā(s) and B̄(s) such that

Ā(s)D(s) + B̄(s)N(s) = I

The polynomial matrices Ā(s) and B̄(s) can be obtained by a sequence of elementary oper-
ations. See Reference [6, pp. 587–595]. Thus A(s) = F(s)Ā(s) and B(s) = F(s)B̄(s) are
solutions of (9.39) for any F(s). This establishes Theorem 9.M1. As in the scalar case, it
is possible to develop general solutions for (9.39). However, the general solutions are not
convenient to use in our design. Thus they will not be discussed.

Next we will change solving (9.39) into solving a set of linear algebraic equations.
Consider Ĝ(s) = N(s)D−1(s), where D(s) and N(s) are right coprime and D(s) is column
reduced. Let µi be the degree of the ith column of D(s). Then we have, as discussed in
Section 7.8.2,

deg Ĝ(s) = deg det D(s) = µ1 + µ2 + · · · + µp =: n (9.40)

Let µ := max(µ1, µ2, . . . , µp). Then we can express D(s) and N(s) as

D(s) = D0 + D1s + D2s
2 + · · · + Dµsµ Dµ �= 0

N(s) = N0 + N1s + N2s
2 + · · · + Nµsµ

Note that Dµ is singular unless µ1 = µ2 = · · · = µp. Note also that Nµ = 0, following the
strict properness assumption of Ĝ(s). We also express A(s), B(s), and F(s) as

A(s) = A0 + A1s + A2s
2 + · · · + Amsm

B(s) = B0 + B1s + B2s
2 + · · · + Bmsm

F(s) = F0 + F1s + F2s
2 + · · · + Fµ+msµ+m

Substituting these into (9.39) and matching the coefficients of like powers of s, we obtain

[A0 B0 A1 B1 · · · Am Bm]Sm = [F0 F1 · · · Fµ+m] =: F̄ (9.41)

9.4 Multivariable Unity-Feedback Systems 295

where

Sm :=




D0 D1 · · · Dµ 0 0 · · · 0
· ·
N0 N1 · · · Nµ 0 0 · · · 0

0 D0 · · · Dµ−1 Dµ 0 · · · 0
· ·
0 N0 · · · Nµ−1 Nµ 0 · · · 0

...
...

...
...

...
...

0 0 · · · 0 D0 D1 · · · Dµ

· ·
0 0 · · · 0 N0 N1 · · · Nµ




(9.42)

The matrix Sm has m + 1 block rows; each block row consists of p D-rows and q N-rows.
Thus Sm has (m+1)(p+q) number of rows. Let us search linearly independent rows of Sm in
order from top to bottom. It turns out that if N(s)D−1(s) is proper, then all D-rows are linearly
independent of their previous rows. An N-row can be linearly independent of its previous rows.
However, if an N-row becomes linearly dependent, then, because of the structure of Sm, the
same N-rows in subsequent N-block rows will be linearly dependent. Let νi be the number of
linearly independent ith N-rows and let

ν := max{ν1, ν2, . . . , νq}
It is called the row index of Ĝ(s). Then all q N-rows in the last N-block row of Sν are linearly
dependent on their previous rows. Thus Sν−1 contains all linearly independent N-rows and its
total number equals, as discussed in Section 7.8.2, the degree of Ĝ(s), that is,

ν1 + ν2 + · · · + νq = n (9.43)

Because all D-rows are linearly independent and there are a total of pν D-rows in Sν−1, we
conclude that Sν−1 has n + pν independent rows or rank n + pν.

Let us consider

S0 =
[

D0 D1 · · · Dµ−1 Dµ

N0 N1 · · · Nµ−1 Nµ

]

It has p(µ + 1) number of columns; however, it has at least a total of
∑p

i=1(µ − µi) zero
columns. In the matrix S1, some new zero columns will appear in the rightmost block column.
However, some zero columns in S0 will not be zero columns in S1. Thus the number of zero
columns in S1 remains as

α :=
p∑

i=1

(µ − µi) = pµ − (µ1 + µ2 + · · · + µp) = pµ − n (9.44)

296 POLE PLACEMENT AND MODEL MATCHING

In fact, this is the number of zero columns in Sm, m = 2, 3, Let S̃µ−1 be the matrix Sµ−1

after deleting these zero columns. Because the number of columns in Sm is p(µ + 1 + m), the
number of columns in S̃ν−1 is

β := p(µ + 1 + ν − 1) − (pµ − n) = pν + n (9.45)

The rank of S̃µ−1 clearly equals the rank of Sµ−1 or pν + n. Thus S̃µ−1 has full column rank.
Now if m increases by 1, the rank and the number of the columns of S̃µ both increase by
p (because the p new D-rows are all linearly independent of their previous rows); thus S̃µ

still has full column rank. Proceeding forward, we conclude that S̃m, for m ≥ µ − 1, has full
column rank.

Let us define

Hc(s) := diag(sµ1 , sµ2 , . . . , sµp) (9.46)

and

Hr (s) = diag(sm1 , sm2 , . . . , smp) (9.47)

Then we have the following matrix version of Theorem 9.2.

� Theorem 9.M2

Consider the unity-feedback system shown in Fig. 9.6 with P = Iq . The plant is described by a q × p

strictly proper rational matrix Ĝ(s). Let Ĝ(s) be factored as Ĝ(s) = N(s)D−1(s), where D(s) and
N(s) are right coprime and D(s) is column reduced with column degrees µi, i = 1, 2, . . . , p. Let ν

be the row index of Ĝ(s) and let mi ≥ ν − 1 for i = 1, 2, . . . , p. Then for any p × p polynominal
matrix F(s), such that

lim
s→∞ H−1

r (s)F(s)H−1
c (s) = Fh (9.48)

is a nonsingular constant matrix, there exists a p × q proper compensator A−1(s)B(s), where A(s) is
row reduced with row degrees mi , such that the transfer matrix from r to y equals

Ĝo(s) = N(s)F−1(s)B(s)

Furthermore, the compensator can be obtained by solving sets of linear algebraic equations in (9.41).

Proof: Let m = max(m1, m2, . . . , mp). Consider the constant matrix

F̄ := [F0 F1 F2 · · · Fm+µ]

It is formed from the coefficient matrices of F(s) and has order p × (m + µ + 1). Clearly
F(s) has column degrees at most m + µi . Thus F̄ has at least α number of zero columns,
where α is given in (9.44). Furthermore, the positions of these zero columns coincide
with those of Sm. Let F̃ be the constant matrix F̄ after deleting these zero columns. Now
consider

[A0 B0 A1 B1 · · · Am Bm]S̃m = F̃ (9.49)

9.4 Multivariable Unity-Feedback Systems 297

It is obtained from (9.41) by deleting α number of zero columns in Sm and the correspond-
ing zero columns in F̄. Now because S̃m has full column rank if m ≥ ν − 1, we conclude
that for any F(s) of column degrees at most m+µi , solutions Ai and Bi exist in (9.49). Or,
equivalently, polynomial matrices A(s) and B(s) of row degree m or less exist in (9.49).
Note that generally S̃m has more rows than columns; therefore solutions of (9.49) are not
unique.

Next we show that A−1(s)B(s) is proper. Note that Dµ is, in general, singular and the
method of proving Theorem 9.2 cannot be used here. Using Hr (s) and Hc(s), we write,
as in (7.80),

D(s) = [Dhc + Dlc(s)H−1
c (s)]Hc(s)

N(s) = [Nhc + Nlc(s)H−1
c (s)]Hc(s)

A(s) = Hr (s)[Ahr + H−1
r (s)Alr (s)]

B(s) = Hr (s)[Bhr + H−1
r (s)Blr (s)]

F(s) = Hr (s)[Fh + H−1
r (s)Fl(s)H−1

c (s)]Hc(s)

where Dlc(s)H−1
c (s), Nlc(s)H−1

c (s), H−1
r (s)Alr (s), H−1

r (s)Blr (s), and H−1
r (s)Fl(s)H−1

c (s)

are all strictly proper rational functions. Substituting the above into (9.39) yields, at s = ∞,

AhrDhc + BhrNhc = Fh

which reduces to, because Nhc = 0 following strict properness of Ĝ(s),

AhrDhc = Fh

Because D(s) is column reduced, Dhc is nonsingular. The constant matrix Fh is nonsingular
by assumption; thus Ahr = FhD−1

hc is nonsingular and A(s) is row reduced. Therefore
A−1(s)B(s) is proper (Corollary 7.8). This establishes the theorem. Q.E.D.

A polynomial matrix F(s) meeting (9.48) is said to be row–column reduced with row
degrees mi and column degrees µi . If m1 = m2 = · · · = mp = m, then the row–column
reducedness is the same as column reducedness with column degrees m + µi . In application,
we can select F(s) to be diagonal or triangular with polynomials with desired roots as its
diagonal entries. Then F−1(s) and, consequently, Ĝo(s) have the desired roots as their poles.

Consider again Sν−1. It is of order (p + q)ν × (µ + ν)p. It has α = pµ − n number
of zero columns. Thus the matrix S̃ν−1 is of order (p + q)ν × [(µ + ν)p − (pµ − n)] or
(p + q)ν × (νp + n). The matrix S̃ν−1 contains pν linearly independent D-rows but contains
only ν1 + · · · + νq = n linearly independent N-rows. Thus S̃ν−1 contains

γ := (p + q)ν − pν − n = qν − n

linearly dependent N-rows. Let Šν−1 be the matrix S̃ν−1 after deleting these linearly dependent
N-rows. Then the matrix Šν−1 is of order

[(p + q)ν − (qν − n)] × (νp + n) = (νp + n) × (νp + n)

Thus Šν−1 is square and nonsingular.

298 POLE PLACEMENT AND MODEL MATCHING

Consider (9.49) with m = ν − 1:

KS̃ν−1 := [A0 B0 A1 B1 · · · Aν−1 Bν−1]S̃ν−1 = F̃

It actually consists of the following p sets of linear algebraic equations

ki S̃ν−1 = f̃i i = 1, 2, . . . , p (9.50)

where ki and f̃i are the ith row of K and F̃, respectively. Because S̃ν−1 has full column rank, for
any f̃i , solutions ki exist in (9.50). Because S̃ν−1 has more γ rows than columns, the general
solution of (9.50) contains γ free parameters (Corollary 3.2). If m in Sm increases by 1 from
ν − 1 to ν, then the number of rows of S̃ν increases by (p + q) but the rank of S̃ν increases
only by p. In this case, the number of free parameters will increase from γ to γ + q. Thus in
the MIMO case, we have a great deal of freedom in carrying out the design.

We discuss a special case of (9.50). The matrix S̃ν−1 has γ linearly dependent N-rows. If
we delete these linearly dependent N-rows from S̃ν−1 and assign the corresponding columns
in Bi as zero, then (9.50) becomes

[A0 B̄0 · · · Aν−1 B̄ν−1]Šν−1 = F̃

where Šν−1 is, as discussed earlier, square and nonsingular. Thus the solution is unique. This
is illustrated in the next example.

Example 9.10 Consider a plant with the strictly proper transfer matrix

Ĝ(s) =
[

1/s2 1/s

0 1/s

]
=
[

1 1

0 1

] [
s2 0

0 s

]−1

=: N(s)D−1(s) (9.51)

The fraction is right coprime and D(s) is column reduced with column degrees µ1 = 2 and
µ2 = 1. We write

D(s) =
[

0 0

0 0

]
+
[

0 0

0 1

]
s +

[
1 0

0 0

]
s2

and

N(s) =
[

1 1

0 1

]
+
[

0 0

0 0

]
s +

[
0 0

0 0

]
s2

We use MATLAB to compute the row index. The QR decomposition discussed in Section 7.3.1
can reveal linearly independent columns, from left to right, of a matrix. Here we need linearly
independent rows, from top to bottom, of Sm; therefore we will apply QR decomposition to
the transpose of Sm. We type

d1=[0 0 0 0 1 0];d2=[0 0 0 1 0 0];

n1=[1 1 0 0 0 0];n2=[0 1 0 0 0 0];

s1=[d1 0 0;d2 0 0;n1 0 0;n2 0 0;...

0 0 d1;0 0 d2;0 0 n1;0 0 n2];

[q,r]=qr(s1’)

9.4 Multivariable Unity-Feedback Systems 299

which yields, as in Example 7.7,

r =




d1 0 0 0 0 0 0 0

0 d2 0 0 0 0 x x

0 0 n1 x 0 0 0 0

0 0 0 n2 0 0 0 0

0 0 0 0 d1 0 0 0

0 0 0 0 0 d2 0 0

0 0 0 0 0 0 n1 0

0 0 0 0 0 0 0 0




The matrix q is not needed and is not typed. In the matrix r, we use x, di, and ni to denote
nonzero entries. The nonzero diagonal entries ofr yield the linearly independent columns of S′

1

or, equivalently, linearly independent rows of S1. We see that there are two linearly independent
N1-rows and one linearly independent N2-row. The degree of Ĝ(s) is 3 and we have found
three linearly independent N-rows. Therefore there is no need to search further and we have
ν1 = 2 and ν2 = 1. Thus the row index is ν = 2. We select m1 = m2 = m = ν − 1 = 1. Thus
for any column-reduced F(s) of column degrees m + µ1 = 3 and m + µ2 = 2, we can find a
proper compensator such that the resulting unity-feedback system has F(s) as its denominator
matrix. Let us choose arbitrarily

F(s) =
[

(s2 + 4s + 5)(s + 3) 0

0 s2 + 2s + 5

]

=
[

15 + 17s + 7s2 + s3 0

0 5 + 2s + s2

]
(9.52)

and form (9.41) with m = ν − 1 = 1:

[A0 B0 A1 B1]




0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

· ·
1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

· ·
0 0 1 1 0 0 0 0

0 0 0 1 0 0 1 0




=
[

15 0 17 0 7 0 1 0

0 5 0 2 0 1 0 0

]
= F̄ (9.53)

The α in (9.44) is 1 for this problem. Thus S1 and F̄ both have one zero column as we can
see in (9.53). After deleting the zero column, the remaining S̃1 has full column rank and, for
any F̃, solutions exist in (9.53). The matrix S̃1 has order 8 × 7 and solutions are not unique.

300 POLE PLACEMENT AND MODEL MATCHING

In searching the row index, we knew that the last row of S̃1 is a linearly dependent row. If
we delete the row, then we must assign the second column of B1 as 0 and the solution will be
unique. We type

d1=[0 0 0 0 0 1];d2=[0 0 0 1 0 0];

n1=[1 1 0 0 0 0];n2=[0 1 0 0 0 0];

d1t=[0 0 0 0 1];d2t=[0 0 0 1 0];n1t=[0 1 0 0 0];

s1t=[d1 0;d2 0;n1 0;n2 0;0 0 d1t;0 0 d2t;0 0 n1t];

f1t=[15 0 17 0 7 1];

f1t/s1t

which yields [7 − 17 15 − 15 1 0 17]. Computing once again for the second row of F̄, we
can finally obtain

[A0 B0 A1 B1] =
[

7 −17 15 −15 1 0 17 0

0 2 0 5 0 1 0 0

]

Note that MATLAB yields the first 7 columns; the last column 0 is assigned by us (due to
deleting the last row of S̃1). Thus we have

A(s) =
[

7 + s −17

0 2 + s

]
B(s) =

[
15 + 17s −15

0 5

]

and the proper compensator

C(s) =
[

s + 7 −17

0 s + 2

]−1 [17s + 15 −15

0 5

]

will yield the overall transfer matrix

Ĝo(s) =
[

1 1

0 1

] [
(s2 + 4s + 5)(s + 3) 0

0 s2 + 2s + 5

]−1

×
[

17s + 15 −15

0 5

]
(9.54)

This transfer matrix has the desired poles. This completes the design.

The design in Theorem 9.M2 is carried out by using a right coprime fraction of Ĝ(s). We
state next the result by using a left coprime fraction of Ĝ(s).

� Corollary 9.M2

Consider the unity-feedback system shown in Fig. 9.7. The plant is described by a q × p strictly proper

rational matrix Ĝ(s). Let Ĝ(s) be factored as Ĝ(s) = D̄−1(s)N̄(s), where D̄(s) and N̄(s) are left
coprime and D̄(s) is row reduced with row degrees νi, i = 1, 2, . . . , q . Let µ be the column index of

Ĝ(s) and let mi ≥ µ− 1. Then for any q × q row-column reduced polynominal matrix F̄(s) such that

lim
s→∞ diag(s−ν1 , s−ν2 , . . . , s−νq)F̄(s)diag(s−m1 , s−m2 , . . . , s−mq) = F̄h

9.4 Multivariable Unity-Feedback Systems 301

r

C G

N D
y

Figure 9.7 Unity feedback with Ĝ(s) = D̄−1(s)N̄(s).

is a nonsingular constant matrix, there exists a p × q proper compensator C(s) = B̄(s)Ā
−1

(s), where
Ā(s) is column reduced with column degrees mi , to meet

D̄(s)Ā(s) + N̄(s)B̄(s) = F̄(s) (9.55)

and the transfer matrix from r to y equals

Ĝo(s) = I − Ā(s)F̄−1(s)D̄(s) (9.56)

Substituting Ĝ(s) = D̄−1N̄(s) and C(s) = B̄(s)Ā
−1

(s) into the first equation in (9.37)
yields

Ĝo(s) = [I + D̄−1(s)N̄(s)B̄(s)Ā
−1

(s)]−1D̄−1(s)N̄(s)B̄(s)Ā
−1

(s)

= Ā(s)[D̄(s)Ā(s) + N̄(s)B̄(s)]−1N̄(s)B̄(s)Ā
−1

(s)

which becomes, after substituting (9.55),

Ĝo(s) = Ā(s)F̄−1(s)[F̄(s) − D̄(s)Ā(s)]Ā
−1

(s)

= I − Ā(s)F̄−1(s)D̄(s)

This establishes the transfer matrix from r to y in the theorem. The design in Corollary 9.M2
hinges on solving (9.55). Note that the transpose of (9.55) becomes (9.39); left coprime and
row reducedness become right coprime and column reducedness. Thus the linear algebraic
equation in (9.41) can be used to solve the transpose of (9.55). We can also solve (9.55)
directly by forming

Tm




B̄0

Ā0

B̄1

Ā1

...

B̄m

Ām




=




D̄0 N̄0
... 0 0

... · · · ... 0 0

D̄1 N̄1
... D̄0 N̄0

... · · · ... 0 0
...

...
...

...
...

...
...

...
...

D̄n N̄n

... D̄n−1 N̄n−1
... · · · ... 0 0

0 0
... D̄n N̄n

... · · · ... D̄0 N̄0

...
...

...
...

...
...

...
...

...

0 0
... 0 0

... · · · ... D̄n N̄n




302 POLE PLACEMENT AND MODEL MATCHING

×




B̄0

Ā0

B̄1

Ā1

...

B̄m

Ām




=




F̄0

F̄1

F̄2

...

F̄n+m


 (9.57)

We search linearly independent columns of Tm in order from left to right. Let µ be the column
index of Ĝ(s) or the least integer such that Tµ−1 contains n linearly independent N̄ -columns.
Then the compensator can be solved from (9.57) with m = µ − 1.

9.4.1 Regulation and Tracking

As in the SISO case, pole placement can be used to achieve regulation and tracking in
multivariable systems. In the regulator problem, we have r ≡ 0 and if all poles of the overall
system are assigned to have negative real parts, then the responses caused by any nonzero
initial state will decay to zero. Furthermore, the rate of decaying can be controlled by the
locations of the poles; the larger the negative real parts, the faster the decay.

Next we discuss tracking of any step reference input. In this design, we generally require
a feedforward constant gain matrix P. Suppose the compensator in Fig. 9.6 has been designed
by using Theorem 9.M2. Then the q × q transfer matrix from r to y is given by

Ĝo(s) = N(s)F−1(s)B(s)P (9.58)

If Ĝo(s) is BIBO stable, then the steady-state response excited by r(t) = d, for t ≥ 0, or
r̂(s) = ds−1, where d is an arbitrary q × 1 constant vector, can be computed as, using the
final-value theorem of the Laplace transform,

lim
t→∞ y(t) = lim

s→0
sĜo(s)ds−1 = Ĝo(0)d

Thus we conclude that in order for y(t) to track asymptotically any step reference input, we
need, in addition to BIBO stability,

Ĝo(0) = N(0)F−1(0)B(0)P = Iq (9.59)

Before discussing the conditions for meeting (9.59), we need the concept of transmission zeros.

Transmission zeros Consider a q × p proper rational matrix Ĝ(s) = N(s)D−1(s), where
N(s) and D(s) are right coprime. A number λ, real or complex, is called a transmission zero
of Ĝ(s) if the rank of N(λ) is smaller than min(p, q).

Example 9.11 Consider the 3 × 2 proper rational matrix

Ĝ1(s) =




s

s + 2
0

0
s + 1

s2

s + 1

s + 2

1

s


 =


 s 0

0 s + 1

s + 1 s


[s + 2 0

0 s2

]−1

9.4 Multivariable Unity-Feedback Systems 303

This N(s) has rank 2 at every s; thus Ĝ1(s) has no transmission zero. Consider the 2×2 proper
rational matrix

Ĝ2(s) =



s

s + 2
0

0
s + 2

s


 =

[
s 0

0 s + 2

] [
s + 2 0

0 s

]−1

This N(s) has rank 1 at s = 0 and s = −2. Thus Ĝ2(s) has two transmission zeros at 0 and
−2. Note that Ĝ(s) has poles also at 0 and −2.

From this example, we see that a transmission zero cannot be defined directly from Ĝ(s);
it must be defined from its coprime fraction. Either a right coprime or left coprime fraction
can be used and each yields the same set of transmission zeros. Note that if Ĝ(s) is square
and if Ĝ(s) = N(s)D−1(s) = D̄−1(s)N̄(s), where N(s) and D(s) are right coprime and D̄(s)

and N̄(s) are left coprime, then the transmission zeros of Ĝ(s) are the roots of det N(s) or the
roots of det N̄(s). Transmission zeros can also be defined from a minimal realization of Ĝ(s).
Let (A, B, C, D) be any n-dimensional minimal realization of a q × p proper rational matrix
Ĝ(s). Then the transmission zeros are those λ such that

rank

[
λI − A B

−C D

]
< n + min(p, q)

This is used in the MATLAB function tzero to compute transmission zeros. For a more
detailed discussion of transmission zeros, see Reference [6, pp. 623–635].

Now we are ready to discuss the conditions for achieving tracking or for meeting (9.59).
Note that N(s), F(s), and B(s) are q ×p, p×p, and p×q. Because Iq has rank q, a necessary
condition for (9.59) to hold is that the q × p matrix N(0) has rank q. Necessary conditions
for ρ(N(0)) = q are p ≥ q and s = 0 is not a transmission zero of Ĝ(s). Thus we conclude
that in order for the unity-feedback configuration in Fig. 9.6 to achieve asymptotic tracking,
the plant must have the following two properties:

● The plant has the same or a greater number of inputs than outputs.

● The plant transfer function has no transmission zero at s = 0.

Under these conditions, N(0) has rank q. Because we have freedom in selecting F(s), we can
select it such that B(0) has rank q and the q×q constant matrix N(0)F−1(0)B(0) is nonsingular.
Under these conditions, the constant gain matrix P can be computed as

P = [N(0)F−1(0)B(0)]−1 (9.60)

Then we have Ĝo(0) = Iq , and the unity-feedback system in Fig. 9.6 with P in (9.60) will
track asymptotically any step reference input.

9.4.2 Robust Tracking and Disturbance Rejection

As in the SISO case, the asymptotic tracking design in the preceding section is not robust. In
this section, we discuss a different design. To simplify the discussion, we study only plants with

304 POLE PLACEMENT AND MODEL MATCHING

+ +

+

r e
φ−1(s)Ip A−1

(s) B(s)

−

w

N(s) D−1(s)

y

Figure 9.8 Robust tracking and disturbance rejection.

an equal number of input terminals and output terminals or p = q. Consider the unity-feedback
system shown in Fig. 9.8. The plant is described by a p × p strictly proper transfer matrix
factored in left coprime fraction as Ĝ(s) = D̄−1(s)N̄(s). It is assumed that p × 1 disturbance
w(t) enters the plant input as shown. The problem is to design a compensator so that the output
y(t) will track asymptotically a class of p × 1 reference signals r(t) even with the presence
of the disturbance w(t) and with plant parameter variations. This is called robust tracking and
disturbance rejection.

As in the SISO case, we need some information on r(t) and w(t) before carrying out the
design. We assume that the Laplace transforms of r(t) and w(t) are given by

r̂(s) = L[r(t)] = Nr (s)D
−1
r (s) ŵ(s) = L[w(t)] = Nw(s)D−1

w (s) (9.61)

where Dr(s) and Dw(s) are known polynomials; however, Nr (s) and Nw(s) are unknown to
us. Let φ(s) be the least common denominator of the unstable poles of r̂(s) and ŵ(s). The
stable poles are excluded because they have no effect on y(t) as t → ∞. We introduce the
internal model φ−1(s)Ip as shown in Fig. 9.8. If D̄(s) and N̄(s) are left coprime and if no root
of φ(s) is a transmission zero of Ĝ(s) or, equivalently, φ(s) and det N̄(s) are coprime, then
it can be shown that D̄(s)φ(s) and N̄(s) are left coprime. See Reference [6, p. 443]. Then

Corollary 9.M2 implies that there exists a proper compensator C(s) = B̄(s)Ā
−1

(s) such that

φ(s)D̄(s)Ā(s) + N̄(s)B̄(s) = F̄(s) (9.62)

for any F̄(s) meeting the condition in Corollary 9.M2. Clearly F̄(s) can be chosen to be diagaonl
with the roots of its diagonal entries lying inside the sector shown in Fig. 8.3(a). The unity-
feedback system in Fig. 9.8 so designed will track asymptotically and robustly the reference
signal r(t) and reject the disturbance w(t). This is stated as a theorem.

� Theorem 9.M3

Consider the unity-feedback system shown in Fig. 9.8 where the plant has a p×p strictly proper transfer

matrix Ĝ(s) = D̄−1(s)N̄(s). It is assumed that D̄(s) and N̄(s) are left coprime and D̄(s) is row reduced
with row degrees νi , i = 1, 2, . . . , p. The reference signal r(t) and disturbance w(t) are modeled
as r̂(s) = Nr (s)D

−1
r (s) and ŵ(s) = Nw(s)D−1

w (s). Let φ(s) be the least common denominator

of the unstable poles of r̂(s) and ŵ(s). If no root of φ(s) is a transmission zero of Ĝ(s), then there
exists a proper compensator C(s) = B̄(s)(Ā(s)φ(s))−1 such that the overall system will robustly and
asymptotically track the reference signal r(t) and reject the disturbance w(t).

9.4 Multivariable Unity-Feedback Systems 305

Proof: First we show that the system will reject the disturbance at the output. Let us
assume r = 0 and compute the output ŷw(s) excited by ŵ(s). Clearly we have

ŷw(s) = D̄−1(s)N̄(s)[ŵ(s) − B̄(s)Ā
−1

(s)φ−1(s)ŷw(s)]

which implies

ŷw(s) = [I + D̄−1(s)N̄(s)B̄(s)Ā
−1

(s)φ−1(s)]−1D̄−1(s)N̄(s)ŵ(s)

=
[
D̄−1(s)[D̄(s)φ(s)Ā(s) + N̄(s)B̄(s)]Ā

−1
(s)φ−1(s)

]−1

× D̄−1(s)N̄(s)ŵ(s)

= φ(s)Ā(s)[D̄(s)φ(s)Ā(s) + N̄(s)B̄(s)]−1N̄(s)ŵ(s)

Thus we have, using (9.61) and (9.62),

ŷw(s) = Ā(s)F̄−1(s)N̄(s)φ(s)Nw(s)D−1
w (s) (9.63)

Because all unstable roots of Dw(s) are canceled by φ(s), all poles of ŷw(s) have negative
real parts. Thus we have yw(t) → 0 as t → ∞ and the response excited by w(t) is
suppressed asymptotically at the output.

Next we compute the error êr (s) excited by the reference signal r̂(s):

êr (s) = r̂(s) − D̄−1(s)N̄(s)B̄(s)Ā
−1

(s)φ−1(s)êr (s)

which implies

êr (s) = [I + D̄−1(s)N̄(s)B̄(s)Ā
−1

(s)φ−1(s)]−1r̂(s)

= φ(s)Ā(s)[D̄(s)φ(s)Ā(s) + N̄(s)B̄(s)]−1D̄(s)r̂(s)

= Ā(s)F̄−1(s)D̄(s)φ(s)Nr (s)D
−1
r (s) (9.64)

Because all unstable roots of Dr(s) are canceled by φ(s), the error vector êr (s) has only
stable poles. Thus its time response approaches zero as t → ∞. Consequently, the output
y(t) will track asymptotically the reference signal r(t). The tracking and disturbance rejec-
tion are accomplished by inserting the internal model φ−1(s)Ip. If there is no perturbation
in the internal model, the tracking property holds for any plant and compensator parameter
perturbations, even large ones, as long as the unity-feedback system remains BIBO stable.
Thus the design is robust. This establishes the theorem. Q.E.D.

In the robust design, because of the internal model, φ(s) becomes zeros of every nonzero
entry of the transfer matrices from w to y and from r to e. Such zeros are called blocking zeros.
These blocking zeros cancel all unstable poles of ŵ(s) and r̂(s); thus the responses due to these
unstable poles are completely blocked at the output. It is clear that every blocking zero is a
transmission zero. The converse, however, is not true. To conclude this section, we mention
that if we use a right coprime fraction for Ĝ(s), insert an internal model and stabilize it, we
can show only disturbance rejection. Because of the noncommutative property of matrices, we
are not able to establish robust tracking. However, it is believed that the system still achieves
robust tracking. The design discussed in Section 9.2.3 can also be extended to the multivariable
case; the design, however, will be more complex and will not be discussed.

306 POLE PLACEMENT AND MODEL MATCHING

9.5 Multivariable Model Matching—Two-Parameter Configuration

In this section, we extend the SISO model matching to the multivariable case. We study only
plants with square and nonsingular strictly proper transfer matrices. As in the SISO case,
given a plant transfer matrix Ĝ(s), a model Ĝo(s) is said to be implementable if there exists a
no-plant-leakage configuration and proper compensators so that the resulting system has the
overall transfer matrix Ĝo(s) and is totally stable and well posed. The next theorem extends
Theorem 9.4 to the matrix case.

� Theorem 9.M4

Consider a plant with p × p strictly proper transfer matrix Ĝ(s). Then a p × p transfer matrix Ĝo(s)

is implementable if and only if Ĝo(s) and

T̂(s) := Ĝ−1(s)Ĝo(s) (9.65)

are proper and BIBO stable.4

For any no-plant-leakage configuration, the closed-loop transfer matrix from r to u is
T̂(s). Thus well posedness and total stability require Ĝo(s) and T̂(s) to be proper and BIBO
stable. This shows the necessity of Theorem 9.M4. Let us write (9.65) as

Ĝo(s) = Ĝ(s)T̂(s) (9.66)

Then (9.66) can be implemented in the open-loop configuration in Fig. 9.1(a) with C(s) = T̂(s).
This design, however, is not acceptable either because it is not totally stable or because it is very
sensitive to plant parameter variations. If we implement it in the unity-feedback configuration,
we have no freedom in assigning canceled poles. Thus the configuration may not be acceptable.
In the unity-feedback configuration, we have

û(s) = C(s)[r̂(s) − ŷ(s)]

Now we extend it to

û(s) = C1(s)r̂(s) − C2(s)ŷ(s) (9.67)

This is a two-degrees-of-freedom configuration. As in the SISO case, we may select C1(s) and
C2(s) to have the same denominator matrix as

C1(s) = A−1(s)L(s) C2(s) = A−1(s)M(s) (9.68)

Then the two-parameter configuration can be plotted as shown in Fig. 9.9. From the figure,
we have

û(s) = A−1(s)[L(s)r̂(s) − M(s)N(s)D−1(s)û(s)]

which implies

4. If Ĝ(s) is not square, then Ĝo(s) is implementable if and only if Ĝo(s) is proper, is BIBO stable, and can be
expressed as Ĝo(s) = Ĝ(s)T̂(s), where T̂(s) is proper and BIBO stable. See Reference [6, pp. 517–523].

9.5 Multivariable Model Matching 307

+r u y
L

M

A−1
(s

(s

(s)

)

)

−
N(s)D−1(s)

Figure 9.9 Two-parameter configuration.

û(s) = [I + A−1(s)M(s)N(s)D−1(s)]−1A−1(s)L(s)r̂(s)

= D(s)[A(s)D(s) + M(s)N(s)]−1L(s)r̂(s)

Thus we have

ŷ(s) = N(s)D−1(s)û(s) = N(s)[A(s)D(s) + M(s)N(s)]−1L(s)r̂(s)

and the transfer matrix from r to y is

Ĝo(s) = N(s)[A(s)D(s) + M(s)N(s)]−1L(s) (9.69)

Thus model matching becomes the problem of solving A(s), M(s) and L(s) in (9.69).

Problem Given a p × p strictly proper rational matrix Ĝ(s) = N(s)D−1(s), where
N(s) and D(s) are right coprime and D(s) is column reduced with column degrees
µi, i = 1, 2, . . . , p, and given any implementable Ĝo(s), find proper compensators
A−1(s)L(s) and A−1(s)M(s) in Fig. 9.9 to implement Ĝo(s).

� Procedure 9.M1

1. Compute

N−1(s)Ĝo(s) = F̄−1(s)Ē(s) (9.70)

where F̄(s) and Ē(s) are left coprime and F̄(s) is row reduced.

2. Compute the row index ν of Ĝ(s) = N(s)D−1(s). This can be achieved by using QR decomposition.

3. Select

F̂(s) = diag(α1(s), α2(s), . . . , αp(s)) (9.71)

where αi(s) are arbitrary Hurwitz polynomials, such that F̂(s)F̄(s) is row–column reduced with
column degrees µi and row degrees mi with

mi ≥ ν − 1 (9.72)

for i = 1, 2, . . . , p.

308 POLE PLACEMENT AND MODEL MATCHING

4. Set

L(s) = F̂(s)Ē(s) (9.73)

and solve A(s) and M(s) from

A(s)D(s) + M(s)N(s) = F̂(s)F̄(s) =: F(s) (9.74)

Then proper compensators A−1(s)L(s) and A−1(s)M(s) can be obtained to achieve the model
matching.

This procedure reduces to Procedure 9.1 if Ĝ(s) is scalar. We first justify the procedure.
Substituting (9.73) and (9.74) into (9.69) yields

Ĝo(s) = N(s)[F̂(s)F̄(s)]−1F̂(s)Ē(s) = N(s)F̄−1(s)Ē(s)

This is (9.70). Thus the compensators implement Ĝo(s). Define

Hc(s) = diag(sµ1 , sµ2 , . . . , sµp) Hr (s) = diag(sm1 , sm2 , . . . , smp)

By assumption, the matrix

lim
s→∞ H−1

r (s)F(s)H−1
c (s) =: Fh

is a nonsingular constant matrix. Thus solutions A(s), having row degrees mi and being row
reduced, and M(s), having row degrees mi or less, exist in (9.74) (Theorem 9.M2). Thus
A−1(s)M(s) is proper. To show that A−1(s)L(s) is proper, we consider

T̂(s) = Ĝ−1(s)Ĝo(s) = D(s)N−1(s)Ĝo(s)

= D(s)F̄−1(s)Ē(s) = D(s)[F̂(s)F̄(s)]−1F̂(s)Ē(s)

= D(s)[A(s)D(s) + M(s)N(s)]−1L(s)

= D(s)
{
A(s)[I + A−1(s)M(s)N(s)D−1(s)]D(s)

}−1
L(s)

= [I + A−1(s)M(s)Ĝ(s)]−1A−1(s)L(s)

which implies, because Ĝ(s) = N(s)D−1(s) is strictly proper and A−1(s)M(s) is proper,

lim
s→∞ T̂(s) = lim

s→∞ A−1(s)L(s)

Because T(∞) is finite by assumption, we conclude that A−1(s)L(s) is proper. If Ĝ(s) is
strictly proper and if all compensators are proper, then the two-parameter configuration is
automatically well posed. The design involves the pole–zero cancellation of F̂(s), which we
can select. If F̂(s) is selected as diagonal with Hurwitz polynomials as its entries, then pole–
zero cancellations involve only stable poles and the system is totally stable. This completes
the justification of the design procedure.

Example 9.12 Consider a plant with transfer matrix

Ĝ(s) =
[

1/s2 1/s

0 1/s

]
=
[

1 1

0 1

] [
s2 0

0 s

]−1

(9.75)

9.5 Multivariable Model Matching 309

It has column degrees µ1 = 2 and µ2=1. Let us select a model as

Ĝo(s) =



2

s2 + 2s + 2
0

0
2

s2 + 2s + 2


 (9.76)

which is proper and BIBO stable. To check whether or not Ĝo(s) is implementable, we compute

T̂(s) := Ĝ−1(s)Ĝo(s) =
[

s2 −s2

0 s

]
Ĝo(s) =




2s2

s2 + 2s + 2

−2s2

s2 + 2s + 2

0
2s

s2 + 2s + 2




which is proper and BIBO stable. Thus Ĝo(s) is implementable. We compute

N−1(s)Ĝo(s) =
[

1 −1

0 1

]
2

s2 + 2s + 2
0

0
2

s2 + 2s + 2




=



2

s2 + 2s + 2

−2

s2 + 2s + 2

0
2

s2 + 2s + 2




=
[

s2 + 2s + 2 0

0 s2 + 2s + 2

]−1 [2 −2

0 2

]

=: F̄−1(s)Ē(s)

For this example, the degree of N−1(s)Ĝo(s) can easily be computed as 4. The determinant
of F̄(s) has degree 4; thus the pair F̄(s) and Ē(s) are left coprime. It is clear that F̄(s) is row
reduced with row degrees r1 = r2 = 2. The row index of Ĝ(s) was computed in Example 9.10
as ν = 2. Let us select

F̂(s) = diag((s + 2), 1)

Then we have

F̂(s)F̄(s) =
[

(s2 + 2s + 2)(s + 2) 0

0 s2 + 2s + 2

]

=
[

4 + 6s + 4s2 + s3 0

0 2 + 2s + s2

]
(9.77)

It is row–column reduced with row degrees {m1 = m2 = 1 = ν − 1} and column degrees
{µ1 = 2, µ2 = 1}. Note that without introducing F̂(s), proper compensators may not exist.
We set

L(s) = F̂(s)Ē(s) =
[

s + 2 0

0 1

] [
2 −2

0 2

]

=
[

2(s + 2) −2(s + 2)

0 2

]
(9.78)

310 POLE PLACEMENT AND MODEL MATCHING

and solve A(s) and M(s) from

A(s)D(s) + M(s)N(s) = F̂(s)F̄(s) =: F(s) (9.79)

From the coefficient matrices of D(s) and N(s) and the coefficient matrices of (9.77), we can
readily form

[A0 M0 A1 M1]




0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

· ·
1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

· ·
0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0




=
[

4 0 6 0 4 0 1 0

0 2 0 2 0 1 0 0

]
(9.80)

As discussed in Example 9.10, if we delete the last column of S1, then the remaining S̃1 has
full column rank and for any F(s), after deleting the last zero column, solutions exist in (9.80).
Now if we delete the last N-row of S̃1, which is linearly dependent on its previous row, the set
of solutions is unique and can be obtained, using MATLAB, as

[A0 M0 A1 M1] =
[

4 −6 4 −4 1 0 6 0

0 2 0 2 0 1 0 0

]
(9.81)

Note that the last zero column is by assignment because of the deletion of the last N-row in
S̃1. Thus we have

A(s) =
[

4 + s −6

0 2 + s

]
M(s) =

[
4 + 6s −4

0 2

]
(9.82)

The two compensators A−1(s)M(s) and A−1(s)L(s) are clearly proper. This completes the
design. As a check, we compute

Ĝo(s) = N(s)F−1(s)L(s) =



2(s + 2)

s3 + 4s2 + 6s + 4
0

0
2

s2 + 2s + 2




=



2

s2 + 2s + 2
0

0
2

s2 + 2s + 2




This is the desired model. Note that the design involves the cancellation of (s + 2), which we
can select. Thus the design is satisfactory.

9.5 Multivariable Model Matching 311

Let us discuss a special case of model matching. Given Ĝ(s) = N(s)D−1(s), let us select
T̂(s) = D(s)D−1

f (s), where Df (s) has the same column degrees and the same column-degree

coefficient matrix as D(s). Then T̂(s) is proper and Ĝo(s) = Ĝ(s)T̂(s) = N(s)D−1
f (s). This

is the feedback transfer matrix discussed in (8.72). Thus the state feedback design discussed
in Chapter 8 can also be carried out by using Procedure 9.M1.

9.5.1 Decoupling

Consider a p × p strictly proper rational matrix Ĝ(s) = N(s)D−1(s). We have assumed that
Ĝ(s) is nonsingular. Thus Ĝ−1(s) = D(s)N−1(s) is well defined; however, it is in general
improper. Let us select T̂(s) as

T̂(s) = Ĝ−1(s)diag(d−1
1 (s), d−1

2 (s), . . . , d−1
p (s)) (9.83)

where di(s) are Hurwitz polynomials of least degrees to make T̂(s) proper. Define

�(s) = diag(d1(s), d2(s), . . . , dp(s)) (9.84)

Then we can write T̂(s) as

T̂(s) = D(s)N−1(s)�−1(s) = D(s)[�(s)N(s)]−1 (9.85)

If all transmission zeros of Ĝ(s) or, equivalently, all roots of det N(s) have negative real parts,
then T̂(s) is proper and BIBO stable. Thus the overall transfer matrix

Ĝo(s) = Ĝ(s)T̂(s) = N(s)D−1(s)D(s)[�(s)N(s)]−1

= N(s)[�(s)N(s)]−1 = �−1(s) (9.86)

is implementable. This overall transfer matrix is a diagonal matrix and is said to be decoupled.
This is the design in Example 9.12.

If Ĝ(s) has nonminimum-phase transmission zeros or transmission zeros with zero or
positive real parts, then the preceding design cannot be employed. However, with some
modification, it is still possible to design a decoupled overall system. Consider again Ĝ(s) =
N(s)D−1(s). We factor N(s) as

N(s) = N1(s)N2(s)

with

N1(s) = diag(β11(s), β12(s), . . . , β1p(s))

where β1i (s) is the greatest common divisor of the ith row of N(s). Let us compute N−1
2 (s),

and let β2i (s) be the least common denominator of the unstable poles of the ith column of
N−1

2 (s). Define

N2d := diag(β21(s), β22(s), . . . , β2p(s))

Then the matrix

N̄2(s) := N−1
2 (s)N2d(s)

312 POLE PLACEMENT AND MODEL MATCHING

has no unstable poles. Now we select T̂(s) as

T̂(s) = D(s)N̄2(s)�
−1(s) (9.87)

with

�(s) = diag(d1(s), d2(s), . . . , dp(s))

where di(s) are Hurwitz polynomials of least degrees to make T̂(s) proper. Because N̄2(s) has
only stable poles, and di(s) are Hurwitz, T̂(s) is BIBO stable. Consider

Ĝo(s) = Ĝ(s)T̂(s) = N1(s)N2(s)D−1(s)D(s)N̄2(s)�
−1(s)

= N1(s)N2d(s)�
−1(s)

= diag

(
β1(s)

d1(s)
,
β2(s)

d2(s)
, · · · , βp(s)

dp(s)

)
(9.88)

where βi(s) = β1i (s)β2i (s). It is proper because both T(s) and Ĝ(s) are proper. It is clearly
BIBO stable. Thus Ĝo(s) is implementable and is a decoupled system.

Example 9.13 Consider

Ĝ(s) = N(s)D−1(s) =
[

s 1

s − 1 s − 1

] [
s3 + 1 1

0 s2

]−1

We compute det N(s) = (s − 1)(s − 1) = (s − 1)2. The plant has two nonminimum-phase
transmission zeros. We factor N(s) as

N(s) = N1(s)N2(s) =
[

1 0

0 s − 1

] [
s 1

1 1

]

with N1(s) = diag(1, (s − 1)), and compute

N−1
2 (s) = 1

(s − 1)

[
1 −1

−1 s

]

If we select

N2d = diag((s − 1), (s − 1)) (9.89)

then the rational matrix

N̄2(s) = N−1
2 (s)N2d(s) =

[
1 −1

−1 s

]

has no unstable poles. We compute

D(s)N̄2(s) =
[

s3 + 1 1

0 s2

] [
1 −1

−1 s

]

=
[

s3 −s3 + s − 1

−s2 s3 + 1

]

If we choose

9.5 Multivariable Model Matching 313

�(s) = diag((s2 + 2s + 2)(s + 2), (s2 + 2s + 2)(s + 2))

then

T̂(s) = D(s)N̄2(s)�
−1(s)

is proper. Thus the overall transfer matrix

Ĝo(s) = Ĝ(s)T̂(s) = diag

(
s − 1

(s2 + 2s + 2)(s + 2)
,

(s − 1)2

(s2 + 2s + 2)(s + 2)

)

is implementable. This is a decoupled system. This decoupled system will not track any step
reference input. Thus we modify it as

Ĝo(s) = diag

(−4(s − 1)

(s2 + 2s + 2)(s + 2)
,

4(s − 1)2

(s2 + 2s + 2)(s + 2)

)
(9.90)

which has Ĝo(0) = I and will track any step reference input.
Next we implement (9.90) in the two-parameter configuration. We follow Procedure 9.M1.

To save space, we define d(s) := (s2 + 2s + 2)(s + 2). First we compute

N−1(s)Ĝo(s) =
[

s 1

s − 1 s − 1

]−1




−4(s − 1)

d(s)
0

0
4(s + 1)2

d(s)




= 1

(s − 1)2

[
s − 1 −1

1 − s s

]
−4(s − 1)

d(s)
0

0
4(s − 1)2

d(s)




=



−4

d(s)

−4

d(s)

4

d(s)

4s

d(s)


 =

[
d(s) 0

0 d(s)

]−1 [−4 −4

4 4s

]

=: F̄−1(s)Ē(s)

It is a left coprime fraction.
From the plant transfer matrix, we have

D(s) =
[

1 1

0 0

]
+
[

0 0

0 0

]
s +

[
0 0

0 1

]
s2 +

[
1 0

0 0

]
s3

and

N(s) =
[

0 1

−1 −1

]
+
[

1 0

1 1

]
s +

[
0 0

0 0

]
s2 +

[
0 0

0 0

]
s3

We use QR decomposition to compute the row index of Ĝ(s). We type

d1=[1 1 0 0 0 0 1 0];d2=[0 0 0 0 0 1 0 0];

n1=[0 1 1 0 0 0 0 0];n2=[-1 -1 1 1 0 0 0 0];

314 POLE PLACEMENT AND MODEL MATCHING

s2=[d1 0 0 0 0;d2 0 0 0 0;n1 0 0 0 0;n2 0 0 0 0;...

0 0 d1 0 0;0 0 d2 0 0;0 0 n1 0 0;0 0 n2 0 0;...

0 0 0 0 d1;0 0 0 0 d2;0 0 0 0 n1;0 0 0 0 n2];

[q,r]=qr(s2’)

From the matrix r (not shown), we can see that there are three linearly independent N1-rows
and two linearly independent N2-rows. Thus we have ν1 = 3 and ν2 = 2 and the row index
equals ν = 3. If we select

F̂(s) = diag
(
(s + 3)2, (s + 3)

)
then F̂(s)F̄(s) is row–column reduced with row degrees {2, 2} and column degrees {3, 2}. We
set

L(s) = F̂(s)Ē(s) =
[−4(s + 3)2 −4(s + 3)2

4(s + 3) 4s(s + 3)

]
(9.91)

and solve A(s) and M(s) from

A(s)D(s) + M(s)N(s) = F̂(s)F̄(s) := F(s)

Using MATLAB, they can be solved as

A(s) =
[

s2 + 10s + 329 100

−46 s2 + 7s + 6

]
(9.92)

and

M(s) =
[−290s2 − 114s − 36 189s + 293

46s2 + 34s + 12 −34s − 46

]
(9.93)

The compensators A−1(s)M(s) and A−1(s)L(s) are clearly proper. This completes the design.

The model matching discussed can be modified in several ways. For example, if stable
roots of det N2(s) are not inside the sector shown in Fig. 8.3(a), they can be included in β2i .
Then they will be retained in Ĝo(s) and will not be canceled in the design. Instead of decoupling
the plant for each pair of input and output, we may decouple it for a group of inputs and a
group of outputs. In this case, the resulting overall transfer matrix is a block-diagonal matrix.
These modifications are straightforward and will not be discussed.

9.6 Concluding Remarks

In this chapter, we used coprime fractions to carry out designs to achieve pole placement or
model matching. For pole placement, the unity-feedback configuration shown in Fig. 9.1(a),
a one-degree-of-freedom configuration, can be used. If a plant has degree n, then any pole
placement can be achieved by using a compensator of degree n − 1 or larger. If the degree of
a compensator is larger than the minimum required, the extra degrees can be used to achieve
robust tracking, disturbance rejection, or other design objectives.

Problems 315

Model matching generally involves pole–zero cancellations. One-degree-of-freedom
configurations cannot be used here because we have no freedom in selecting canceled poles.
Any two-degree-of-freedom configuration can be used because we have freedom in selecting
canceled poles. This text discusses only the two-parameter configuration shown in Fig. 9.4.

All designs in this chapter are achieved by solving sets of linear algebraic equations. The
basic idea and procedure are the same for both the SISO and MIMO cases. All discussion
in this chapter can be applied, without any modification, to discrete-time systems; the only
difference is that desired poles must be chosen to lie inside the region shown in Fig. 8.3(b)
instead of in Fig. 8.3(a).

This chapter studies only strictly proper Ĝ(s). If Ĝ(s) is proper, the basic idea and
procedure are still applicable, but the degree of compensators must be increased to ensure
properness of compensators and well posedness of overall systems. See Reference [6]. The
model matching in Section 9.5 can also be extended to nonsquare plant transfer matrices. See
also Reference [6].

The controller-estimator design in Chapter 8 can be carried out using polynomial fractions.
See References [6, pp. 506–514; 7, pp. 461–465]. Conversely, because of the equivalence of
controllable and observable state equations and coprime fractions, we should be able to use
state equations to carry out all designs in this chapter. The state-space design, however, will
be more complex and less intuitively transparent, as we may conclude from comparing the
designs in Sections 8.3.1 and 9.2.2.

The state-space approach first appeared in the 1960s, and by the 1980s the concepts of
controllability and observability and controller-estimator design were integrated into most
undergraduate control texts. The polynomial fraction approach was developed in the 1970s;
its underlying concept of coprimeness, however, is an ancient one. Even though the concepts
and design procedures of the coprime fraction approach are as simple as, if not simpler than,
the state-space approach, the approach appears to be less widely known. It is hoped that this
chapter has demonstrated its simplicity and usefulness and will help in its dissemination.

PROBLEMS
9.1 Consider

A(s)D(s) + B(s)N(s) = s2 + 2s + 2

where D(s) and N(s) are given in Example 9.1. Do solutions A(s) and B(s) exist in the
equation? Can you find solutions with deg B(s) ≤ deg A(s) in the equation?

9.2 Given a plant with transfer function ĝ(s) = (s − 1)/(s2 − 4), find a compensator in
the unity-feedback configuration so that the overall system has desired poles at −2 and
−1 ± j1. Also find a feedforward gain so that the resulting system will track any step
reference input.

9.3 Suppose the plant transfer function in Problem 9.2 changes to ˆ̄g(s) = (s−0.9)/(s2−4.1)

after the design is completed. Can the overall system still track asymptotically any step
reference input? If not, give two different designs, one with a compensator of degree 3
and another with degree 2, that will track asymptotically and robustly any step reference
input. Do you need additional desired poles? If yes, place them at −3.

316 POLE PLACEMENT AND MODEL MATCHING

9.4 Repeat Problem 9.2 for a plant with transfer function ĝ(s) = (s − 1)/s(s − 2). Do
you need a feedforward gain to achieve tracking of any step reference input? Give your
reason.

9.5 Suppose the plant transfer function in Problem 9.4 changes to ˆ̄g(s) = (s−0.9)/s(s−2.1)

after the design is completed. Can the overall system still track any step reference input?
Is the design robust?

9.6 Consider a plant with transfer function ĝ(s) = 1/(s −1). Suppose a disturbance of form
w(t) = a sin(2t + θ), with unknown amplitude a and phase θ , enters the plant as shown
in Fig. 9.2. Design a biproper compensator of degree 3 in the feedback system so that
the output will track asymptotically any step reference input and reject the disturbance.
Place the desired poles at −1 ± j2 and −2 ± j1.

9.7 Consider the unity feedback system shown in Fig. 9.10. The plant transfer function is
ĝ(s) = 2/s(s + 1). Can the output track robustly any step reference input? Can the
output reject any step disturbance w(t) = a? Why?

+
+r

1.5

w(t)

2

s(s + 1)

y

−

Figure 9.10

9.8 Consider the unity-feedback system shown in Fig. 9.11(a). Is the transfer function from
r to y BIBO stable? Is the system totally stable? If not, find an input–output pair whose
closed-loop transfer function is not BIBO stable.

+ + + + + +
+ + + +

r

n1

1

s − 2

n2

s − 2

s

n3

y
y

− u

+r e

n2

C(s)
u

^g(s)

n3

−

(b)(a)

Figure 9.11

9.9 Consider the unity-feedback system shown in Fig. 9.11(b). (1) Show that the closed-loop
transfer function of every possible input–output pair contains the factor (1+C(s)ĝ(s))−1.
(2) Show that (1 + C(s)ĝ(s))−1 is proper if and only if

1 + C(∞)ĝ(∞) �= 0

(3) Show that if C(s) and ĝ(s) are proper, and if C(∞)ĝ(∞) �= −1, then the system is
well posed.

9.10 Given ĝ(s) = (s2 − 1)/(s3 + a1s
2 + a2s + a3), which of the following ĝo(s) are

implementable for any ai and bi .

Problems 317

s − 1

(s + 1)2

s + 1

(s + 2)(s + 3)

s2 − 1

(s − 2)3

(s2 − 1)

(s + 2)2

(s − 1)(b0s + b1)

(s + 2)2(s2 + 2s + 2)

1

1

9.11 Given ĝ(s) = (s − 1)/s(s − 2), implement the model ĝo(s) = −2(s − 1)/(s2 + 2s + 2)

in the open-loop and the unity-feedback configurations. Are they totally stable? Can the
implementations be used in practice?

9.12 Implement Problem 9.11 in the two-parameter configuration. Select the poles to be
canceled at s = −3. Is A(s) a Hurwitz polynomial? Can you implement the two
compensators as shown in Fig. 9.4(a)? Implement the two compensators in Fig. 9.4(d)
and draw its op-amp circuit.

9.13 Given a BIBO stable ĝo(s), show that the steady-state response yss(t) := limt→∞ y(t)

excited by the ramp reference input r(t) = at for t ≥ 0 is given by

yss(t) = ĝo(0)at + ĝ′
o(0)a

Thus if the output is to track asymptotically the ramp reference input we require ĝo(0) = 1
and ĝ′

o(0) = 0.

9.14 Given a BIBO stable

ĝo(s) = b0 + b1s + · · · + bmsm

a0 + a1s + · · · + ansn

with n ≥ m, show that ĝo(0) = 1 and ĝ′
o(0) = 0 if and only if a0 = b0 and a1 = b1.

9.15 Given a plant with transfer function ĝ(s) = (s + 3)(s − 2)/(s3 + 2s − 1), (1) find
conditions on b1, b0, and a so that

ĝo(s) = b1s + b0

s2 + 2s + a

is implementable; and (2) determine if

ĝo(s) = (s − 2)(b1s + b0)

(s + 2)(s2 + 2s + 2)

is implementable. Find conditions on b1 and b0 so that the overall transfer function will
track any ramp reference input.

9.16 Consider a plant with transfer matrix

Ĝ(s) =



s + 1

s(s − 1)

1

s2 − 1




Find a compensator in the unity-feedback configuration so that the poles of the overall
system are located at −2, −1 ± j and the rest at s = −3. Can you find a feedforward
gain so that the overall system will track asymptotically any step reference input?

318 POLE PLACEMENT AND MODEL MATCHING

9.17 Repeat Problem 9.16 for a plant with transfer matrix

Ĝ(s) =
[

s + 1

s(s − 1)

1

s2 − 1

]

9.18 Repeat Problem 9.16 for a plant with transfer matrix

Ĝ(s) =



s − 2

s2 − 1

1

s − 1
1

s

2

s − 1




9.19 Given a plant with the transfer matrix in Problem 9.18, is

Ĝo(s) =




4(s2 − 4s + 1)

(s2 + 2s + 2)(s + 2)
0

0
4(s2 − 4s + 1)

(s2 + 2s + 2)(s + 2)




implementable? If yes, implement it.

9.20 Diagonalize a plant with transfer matrix

Ĝ(s) =
[

1 s

1 1

] [
1 s2 + 1

s 0

]−1

Set the denominator of each diagonal entry of the resulting overall system as s2 +2s +2.

References

We list only the references used in preparing this edition. The list does not indicate original sources of
the results presented. For more extensive lists of references, see References [2, 6, 13, 15].

1. Anderson, B. D. O., and Moore, J. B., Optimal Control—Linear Quadratic Methods, Englewood
Cliffs, NJ: Prentice Hall, 1990.

2. Antsaklis, A. J., and Michel, A. N., Linear Systems, New York: McGraw-Hill, 1997.
3. Callier, F. M., and Desoer, C. A., Multivariable Feedback Systems, New York: Springer-Verlag,

1982.
4. Callier, F. M., and Desoer, C. A., Linear System Theory, New York: Springer-Verlag, 1991.
5. Chen, C. T., Introduction to Linear System Theory, New York: Holt, Rinehart & Winston, 1970.
6. Chen, C. T., Linear System Theory and Design, New York: Oxford University Press, 1984.
7. Chen, C. T., Analog and Digital Control System Design: Transfer Function, State-Space, and

Algebraic Methods, New York: Oxford University Press, 1993.
8. Chen, C. T., and Liu, C. S., “Design of Control Systems: A Comparative Study,” IEEE Control

System Magazine, vol. 14, pp. 47–51, 1994.
9. Doyle, J. C., Francis, B. A., and Tannenbaum, A. R., Feedback Control Theory, New York:

Macmillan, 1992.
10. Gantmacher, F. R., The Theory of Matrices, vols. 1 and 2, New York: Chelsea, 1959.
11. Golub, G. H., and Van Loan, C. F., Matrix Computations 3rd ed., Baltimore: The Johns Hopkins

University Press, 1996.
12. Howze, J. W., and Bhattacharyya, S. P., “Robust tracking, error feedback, and two-degree-of-freedom

controllers,” IEEE Trans. Automatic Control, vol. 42, pp. 980–983, 1997.
13. Kailath, T., Linear Systems, Englewood Cliffs, NJ: Prentice Hall, 1980.
14. Kurcera, V., Analysis and Design of Discrete Linear Control Systems, London: Prentice Hall, 1991.
15. Rugh, W., Linear System Theory, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 1996.
16. Strang, G., Linear Algebra and Its Application, 3rd ed., San Diego: Harcourt, Brace, Javanovich,

1988.
17. The Student Edition of MATLAB, Version 4, Englewood Cliffs, NJ: Prentice Hall, 1995.
18. Tongue, B. H., Principles of Vibration, New York: Oxford University Press, 1996.
19. Tsui, C. C., Robust Control System Design, New York: Marcel Dekker, 1996.
20. Vardulakis, A. I. G., Linear Multivariable Control, Chichester: John Wiley, 1991.
21. Vidyasagar, M., Control System Synthesis: A Factorization Approach, Cambridge, MA: MIT Press,

1985.
22. Wolovich, W. A., Linear Multivariable Systems, New York: Springer-Verlag, 1974.
23. Zhou, K., Doyle, J. C., and Glover, K., Robust and Optimal Control, Upper Saddle River, NJ:

Prentice Hall, 1995.

319

Answers to Selected Problems

CHAPTER 2

2.1 (a) Linear. (b) and (c) Nonlinear. In (b), shift the operating point to (0, yo); then (u, ȳ) is linear,
where ȳ = y − yo.

2.3 Linear, time varying, causal.

2.5 No, yes, no for x(0) �= 0. Yes, yes, yes for x(0) = 0. The reason is that the superposition property
must also apply to the initial states.

2.9 y(t) = 0 for t < 0 and t > 4.

y(t) =



0.5t2 for 0 ≤ t < 1

−1.5t2 + 4t − 2 for 1 ≤ t ≤ 2

−y(4 − t) for 2 < t ≤ 4

2.10 ĝ(s) = 1/(s + 3), g(t) = e−3t for t ≥ 0.

2.12

Ĝ(s) =
[

D11(s) D12(s)

D21(s) D22(s)

]−1 [
N11(s) N12(s)

N21(s) N22(s)

]

2.15 (a) Define x1 = θ and x2 = θ̇ . Then ẋ1 = x2, ẋ2 = −(g/l) sin x1 + (u/ml) cos x1. If θ is
small, then

ẋ =
[

0 1

−g/l 0

]
x +

[
0

−1/mg

]
u

It is a linear state equation.
(b) Define x1 = θ1, x2 = θ̇1, x3 = θ2, and x4 = θ̇2. Then

ẋ1 = x2

ẋ2 = − (g/l1) sin x1 + (m2g/m1l) cos x3 sin(x3 − x1)

+ (1/m1l) sin x3 sin(x3 − x1) · u

ẋ3 = x4

ẋ4 = − (g/l2) sin x3 + (1/m2l2)(cos x3)u

This is a set of nonlinear equations. If θi ≈ 0 and θiθj ≈ 0, then it can be linearized as

321

322 ANSWERS TO SELECTED PROBLEMS

ẋ =




0 1 0 0

−g(m1 + m2)/m1l1 0 m2g/m1l1 0

0 0 0 1

0 0 −g/l2 0


 x +




0

0

0

1/m2l2


 u

2.16 From

mḧ = f1 − f2 = k1θ − k2u

I θ̈ + bθ̇ = (l1 + l2)f2 − l1f1

we can readily obtain a state equation. Assuming I = 0 and taking their Laplace transforms can
yield the transfer function.

2.18 ĝ1(s) = ŷ1(s)/û(s) = 1/(A1R1s + 1), ĝ2(s) = ŷ(s)/ŷ1(s) = 1/(A2R2s + 1). Yes,
ŷ(s)/û(s) = ĝ1(s)ĝ2(s).

2.20

ẋ =

 0 0 1/C1

0 0 1/C2

−1/L1 −1/L1 −(R1 + R2)/L1


 x

+

 0 −1/C1

0 0

1/L1 R1/L1


[u1

u2

]

y = [−1 − 1 − R1]x + [1 R1]u

ĝ1(s) = ŷ(s)

û1(s)
= s2 + (R2/L1)s

s2 +
(

R1 + R2

L1

)
s +

(
1

C1
+ 1

C2

)
1

L1

ĝ2(s) = ŷ(s)

û2(s)
= (R1s + (1/C1))(s + (R2/L1))

s2 +
(

R1 + R2

L1

)
s +

(
1

C1
+ 1

C2

)
1

L1

ŷ(s) = ĝ1(s)û1(s) + ĝ2(s)û2(s)

CHAPTER 3

3.1
[

1
3

8
3

]′
, [−2 1.5]′.

3.3

q1 = 1

3.74


 2

−3

1


 q2 = 1

1.732


 1

1

1




3.5 ρ(A1) = 2, nullity(A1)=1; 3, 0; 3, 1.

Answers to Selected Problems 323

3.7 x = [1 1] is a solution. Unique. No solution if y = [1 1 1]′.

3.9 α1 = 4/11, α2 = 16/11. The solution

x =
[

4

11

−8

11

−4

11

−16

11

]′

has the smallest 2-norm.

3.12

Ā =




0 0 0 −8

1 0 0 20

0 1 0 −18

0 0 1 7




3.13

Q3 =

 1 0 −1

0 1 0

0 0 1


 Â3 =


 1 0 0

0 1 0

0 0 2




Q4 =

 5 4 0

0 20 1

0 −25 0


 Â4 =


 0 1 0

0 0 1

0 0 0




3.18

�1(λ) = (λ − λ1)
3(λ − λ2) ψ1(λ) = �1(λ)

�2(λ) = (λ − λ1)
4 ψ2(λ) = (λ − λ1)

3

�3(λ) = (λ − λ1)
4 ψ3(λ) = (λ − λ1)

2

�4(λ) = (λ − λ1)
4 ψ4(λ) = (λ − λ1)

3.21

A10 =

 1 1 9

0 0 1

0 0 1


 A103 =


 1 1 102

0 0 1

0 0 1




eAt =

 et et − 1 tet − et + 1

0 1 et − 1

0 0 et




3.22

eA4t =

 1 4t + 2.5t2 3t + 2t2

0 1 + 20t 16t

0 −25t 1 − 20t




324 ANSWERS TO SELECTED PROBLEMS

3.24

B =

 ln λ1 0 0

0 ln λ2 0

0 0 ln λ3




B =

 ln λ 1/λ 0

0 ln λ 0

0 0 ln λ




3.32 Eigenvalues: 0, 0. No solution for C1. For any m1, [m1 3 − m1]′ is a solution for C2.

3.34
√

6, 1. 4.7, 1.7.

CHAPTER 4

4.2 y(t) = 5e−t sin t for t ≥ 0.

4.3 For T = π ,

x[k + 1] =
[−0.0432 0

0 −0.0432

]
x[k] +

[
1.5648

−1.0432

]
u[k]

y[k] = [2 3]x[k]

4.5 MATLAB yields |y|max = 0.55, |x1|max = 0.5, |x2|max = 1.05, and |x3|max = 0.52 for unit
step input. Define x̄1 = x1, x̄2 = 0.5x2, and x̄3 = x3. Then

˙̄x =

−2 0 0

0.5 0 0.5

0 −4 −2


 x̄ +


 1

0

1


 u y = [1 − 2 0]x̄

The largest permissible a is 10/0.55 = 18.2.

4.8 They are not equivalent but are zero-state equivalent.

4.11 Using (4.34), we have

ẋ =




−3 0 −2 0

0 −3 0 −2

1 0 0 0

0 1 0 0


 x +




1 0

0 1

0 0

0 0


 u

y =
[

2 2 4 −3

−3 −2 −6 −2

]
x +

[
0 0

1 1

]
u

4.13

ẋ =




−3 1 0 0

−2 0 0 0

0 0 −3 1

0 0 −2 0


 x +




2 2

4 −3

−3 −2

−6 −2


 u

Answers to Selected Problems 325

y =
[

1 0 0 0

0 0 1 0

]
x +

[
0 0

1 1

]
u

Both have dimension 4.

4.16

X(t) =
[

1
∫ t

0 e0.5τ 2
dτ

0 e0.5t2

]

�(t, t0) =
[

1 −e0.5t2 ∫ t

t0
e0.5τ 2

dτ

0 e0.5(t2−t2
0)

]

X(t) =
[

e−t et

0 2e−t

]

�(t, t0) =
[

e−(t−t0) 0.5(et et0 − e−t et0)

0 e−(t−t0)

]

4.20

�(t, t0) =
[

ecos t−cos t0 0

0 e− sin t+sin t0

]

4.23 Let x̄(t) = P(t)x(t) with

P(t) =
[

e− cos t 0

0 esin t

]

Then ˙̄x(t) = 0 · x̄ = 0.

4.25

ẋ = 0 · x +

 t2e−λt

−2te−λt

e−λt


 u y = [eλt teλt t2eλt]x

ẋ =

 3λ −3λ2 λ3

1 0 0

0 1 0


 x +


 1

0

0


 u y = [0 0 2]x

CHAPTER 5

5.1 The bounded input u(t) = sin t excites y(t) = 0.5t sin t , which is not bounded. Thus the system
is not BIBO stable.

5.3 No. Yes.

5.6 If u(t) = 3, then y(t) → −6. If u(t) = sin 2t , then y(t) → 1.26 sin(2t + 1.25).

5.8 Yes.

326 ANSWERS TO SELECTED PROBLEMS

5.10 Not asymptotically stable. Its minimal polynomial can be found from its Jordan form as ψ(λ) =
λ(λ + 1). λ = 0 is a simple eigenvalue, thus the equation is marginally stable.

5.13 Not asymptotically stable. Its minimal polynomial can be found from its Jordan form as ψ(λ) =
(λ − 1)2(λ + 1). λ = 1 is a repeated eigenvalue, thus the equation is not marginally stable.

5.15 If N = I, then

M =
[

2.2 1.6

1.6 4.8

]

It is positive definite; thus all eigenvalues have magnitudes less than 1.

5.17 Because x′Mx = x′[0.5(M+M′)]x, the only way to check positive definiteness of nonsymmetric
M is to check positive definiteness of symmetric 0.5(M + M′).

5.20 Both are BIBO stable.

5.22 BIBO stable, marginally stable, not asymptotically stable. P(t) is not a Lyapunov transformation.

CHAPTER 6

6.2 Controllable, observable.

6.5

ẋ =
[−1 0

0 −1

]
x +

[
1

0

]
u y = [0 − 1]x + 2u

Not controllable, not observable.

6.7 µi = 1 for all i and µ = 1.

6.9 y = 2u.

6.14 Controllable, not observable.

6.17 Using x1 and x2 yields

ẋ =
[−2/11 0

3/22 0

]
x +

[−2/11

3/22

]
u y = [−1 − 1]x

This two-dimensional equation is not controllable but is observable.
Using x1, x2, and x3 yields

ẋ =

−2/11 0 0

3/22 0 0

1/22 0 0


 x +


−2/11

3/22

1/22


 u y = [0 0 1]x

This three-dimensional equation is not controllable and not observable.

6.19 For T = π , not controllable and not observable.

6.21 Not controllable at any t . Observable at every t .

Answers to Selected Problems 327

CHAPTER 7

7.1

ẋ =

−2 1 2

1 0 0

0 1 0


 x +


 1

0

0


 u y = [0 1 − 1]x

Not observable.

7.3

ẋ =




−2 1 2 a1

1 0 0 a2

0 1 0 a3

0 0 0 a4


 x +




1

0

0

0


 u y = [0 1 − 1 c4]x

For any ai and c4, it is an uncontrollable and unobservable realization.

ẋ =
[−3 −2

1 0

]
x +

[
1

0

]
u y = [0 1]x

A controllable and observable realization.

7.5

Solve the monic null vector of


−1 −1 0 0

0 2 −1 −1

4 0 0 2

0 0 4 0






−N0

D0

−N1

D1


 = 0

as [−0.5 0.5 0 1]′. Thus 0.5/(0.5 + s) = 1/(2s + 1).

7.10

ẋ =
[

0 1

−2 −1

]
x +

[
0

1

]
u y = [1 0]x

7.13

�1(s) = s(s + 1)(s + 3) deg = 3

�2(s) = (s + 1)3(s + 2)2 deg = 5

7.17 Its right coprime fraction can be computed from any left fraction as

Ĝ(s) =
[

2.5 s + 0.5

2.5 s + 2.5

] [
0.5s s2 + 0.5s

s − 0.5 −0.5

]−1

or, by interchanging their two columns,

328 ANSWERS TO SELECTED PROBLEMS

Ĝ(s) =
[

s + 0.5 2.5

s + 2.5 2.5

] [
s2 + 0.5s 0.5s

−0.5 s − 0.5

]−1

Using the latter, we can obtain

ẋ =

−0.5 −0.25 −0.25

1 0 0

0 0.5 0.5


 x +


 1 −0.5

0 0

0 1


u

y =
[

1 0.5 2.5

1 2.5 2.5

]
x

CHAPTER 8

8.1 k = [4 1].

8.3 For

F =
[−1 0

0 −2

]
k̄ = [1 1]

we have

T =
[

0 1/13

1 9/13

]
k = k̄T−1 = [4 1]

8.5 Yes, yes, yes.

8.7 u = pr − kx with k = [15 47 − 8] and p = 0.5.

8.9 u[k] = pr[k] − kx[k] with k = [1 5 2] and p = 0.5. The overall transfer function is

ĝf (z) = 0.5(2z2 − 8z + 8)

z3

and the output excited by r[k] = a is y[0] = 0, y[1] = a, y[2] = −3a, and y[k] = a for
k ≥ 3.

8.11 Two-dimensional estimator:

ż =
[−2 2

−2 −2

]
z +

[
0.6282

−0.3105

]
u +

[
1

0

]
y

x̂ =
[−12 −27.5

19 32

]
z

One-dimesnional estimator:

ż = −3z + (13/21)u + y

x̂ =
[−4 21

5 −21

] [
y

z

]

Answers to Selected Problems 329

8.13 Select

F =




−4 3 0 0

−3 4 0 0

0 0 −5 4

0 0 −4 −5




If K̄ =
[

1 0 1 0

0 0 0 0

]
then K =

[
62.5 147 20 515.5

0 0 0 0

]

If K̄ =
[

1 0 0 0

0 0 1 0

]
then K =

[−606.2 −168 −14.2 −2

371.1 119.2 14.9 2.2

]

CHAPTER 9

9.2 C(s) = (10s + 20)/(s − 6), p = −0.2.

9.4 C(s) = (22s − 4)/(s − 16), p = 1. There is no need for a feed forward gain because ĝ(s)
contains 1/s.

9.6 C(s) = (7s3 + 14s2 + 34s + 25)/(s(s2 + 4)).

9.8 Yes, no. The transfer function from r to u is ĝur (s) = s/(s + 1)(s − 2), which is not BIBO
stable.

9.10 Yes, no, no, no, yes, no (row-wise).

9.12 C1(s) = −2(s+3)/(s−21), C2(s) = (28s−6)/(s−21). A(s) = s−21 is not Hurwitz. Its
implementation in Fig. 9.4(a) will not be totally stable. A minimal realization of [C1(s) −C2(s)]
is

ẋ = 21x + [−48 − 582]

[
r

y

]
y = x + [−2 − 28]

[
r

y

]

from which an op-amp circuit can be drawn.

9.15 (1) a > 0 and b0 = −2b1. (2) Yes, b0 = −2, b1 = −4.

9.16 The 1 × 2 compensator

C(s) = 1

s + 3.5
[3.5s + 12 − 2]

will place the closed-loop poles at −2, −1 ± j, −3. No.

9.18 If we select

F(s) = diag((s + 2)(s2 + 2s + 2)(s + 3), (s2 + 2s + 2))

then we cannot find a feedforward gain to achieve tracking. If

F(s) =
[

(s + 2)(s2 + 2s + 2)(s + 3) 0

1 s2 + 2s + 2

]

then the compensator

330 ANSWERS TO SELECTED PROBLEMS

C(s) = A−1(s)B(s) =
[

s − 4.7 −53.7

−3.3 s − 4.3

]−1 [−30.3s − 29.7 4.2s − 12

−0.7s − 0.3 4s − 1

]

and the feedforward gain matrix

P =
[

0.92 0

−4.28 1

]

will achieve the design.

9.20 The diagonal transfer matrix

Ĝo(s) =



−2(s − 1)

s2 + 2s + 2
0

0
−2(s − 1)

s2 + 2s + 2




is implementable. The proper compensators A−1(s)L(s) and A−1(s)M(s) with

A(s) =
[

s + 5 −14

0 s + 4

]
L(s) =

[−2(s + 3) 2(s + 3)

2 −2s

]

M(s) =
[−6 13s + 1

2 −2s

]

in the two-parameter configuration will achieve the design.

INDEX

Index Terms Links

A

Actuating signal 231

Adder 16

Additivity 8 32

Adjoint 52

Asymptotic stability 131 138

Asymptotic tracking 242 302

of ramp input 276

of step input 276

B

Balanced realization 204 227

Basis 45

 change of 53

 orthonormal 46

Bezout identity 272

BIBO stability 122 125 138 192

Black box 5

Blocking zero 15 305

C

Canonical-form, companion 97 203

 controllable 102 187 235

 Jordan 61 164 182

 modal 98 182 241

 observable 188

Causality 6 10 32

Cayley-Hamilton theorem 63

Index Terms Links

Characteristic polynomial 55 225

of constant matrix 55

of rational function 189

of rational matrix 205

Column degree 212 225

Column-degree-coefficient matrix 213 219

Column echelon form 219

Column indices 215

Companion-form matrix 54 81

characteristic polynomial of 55

 eigenvectors of 81

Compensator 273 283

 feedback 287

 feedforward 287

Compensator equation 271

Configuration. See Control configuration

Control configuration 270

 closed-loop 267

 controller-estimator 270 287

 feedback 267

 no-plant-leakage 283

 one-degree-of-freedom 270 287

 open-loop 269

 plant-input-output feedback 270

 two-degree-of-freedom 270 287

 two-parameter 270 287 291 307

 unity-feedback 273 284 287

Controllability 144 169 176

 after sampling 172

from the origin 172

 Gramian 145 170

 index 151

 indices 150 225

 matrix 145 169

 to the origin 171

Index Terms Links

Convolution, integral 12

 discrete 32

Coprimeness 15 187 211 214

 left 211

 right 211

Cyclic matrix 256

D

Dead beat design 267

Decoupling 311

Degree of rational function 189

 McMillan 205

 of rational matrix 205 211

Description of systems 2

 external 2

 input-output 2 8 12

 internal 2

 state-space 2 10 35

Determinant 52

Discretization 90

Disturbance rejection 243 277

Divisor, common 187 210

 greatest common 187 211

 left 210

 right 210

Duality, theorem of 155

E

Eigenvalue 55

 assignment of 234 256

 index of 62

 multiplicity of 59 62

Eigenvector 55

 generalized 59

Index Terms Links

Equivalence 95 112 191

 algebraic 95 112

 Lyapunov 114

 zero-state 96

Equivalence transformation 95 112 152

F

Floquet, theory of 115

Fraction, polynomial 189

 coprime 189 192

 matrix 209 210

Fundamental cutset 27

Fundamental loop 27

Fundamental matrix 107 108

G

gcd 187

 gcld 112

 gcrd 112

General solution 50 272 282

Generalized eigenvector 59

 chain of 59

 grade of 59

Gramian, controllability 145 170

 observability 156 171

H

Hankel matrix 201 226

Hankel singular value 199

Homogeneity 8 32

Hurwitz polynomial 271 285

Index Terms Links

I

Implementable transfer function 285 306

Impulse response 10

 matrix 10

 sequence 32

Impulse sequence 31

Integrator 16

Internal model principle 247 279

Inverter 16

J

Jacobian 18

Jordan block 60

Jordan-form matrix 60 164

K

Kalman decomposition theorem 162

L

Laplace expansion 52

Laplace transform 13

Leverrier algorithm 83

Linear algebraic equations 48

Linear space 45

 basis of 45

change of basis 53

 dimension 45

Linearity 7

Linearization 18 30

Link 27

Lyapunov equation 70 239

 discrete 135

Lyapunov theorem 132 135

Index Terms Links

Lyapunov transformation 114

M

Markov parameter 200 225

Matrix 44

 cofactor of 52

 cyclic 256

 function of 65

 fundamental 107

 inverse of 52

 left inverse of 208

 minor of 52 205

 nilpotent 61

 nonsingular 52

 norm of 78

 orthogonal 74

 principal minor 75

 leading 75

 pseudoinverse of 208

 rank of 49

right inverse of 208

singular value of 76

 state transition 108

 symmetric 73

 trace of 83

Minimal polynomial 62

Minimal realization 184 191

Minimum energy control 149

Minor 52 205

Modal form 98 182 241

Model matching 283 306

Model reduction 200

Monic polynomial 62

Index Terms Links

Multiple, left 210

 right 210

Multiplier 12

N

Nilpotent matrix 61

Nominal equation 243

Norm, of matrix 78

 Euclidean 47

 induced 78

 of vector 46

Normal tree 27

Null vector 49

 monic 194

Nullity 49

O

Observability 153 170 179

 Gramian 156 171

 index 157

 indices 157 225

 matrix 156 171

Observer. See State estimator

Op-amp circuit 16

 magnitude scaling 98

Orthogonal matrix 74

Orthogonality of vectors 47

Orthonormal set 47 48

P

Parameterization 50 272 282

Periodic state system 114

Pole 15

Pole placement 273 292

Index Terms Links

Pole-zero cancellation 287

 unstable 287

Pole-zero excess inequality 285

Polynomial matrix 210

 column degree 212 225

 column-degree-coefficient matrix 213 219

 column reduced 212

 echelon form 219 220

 left divisor 210

 left multiple 210

 right divisor 210

 right multiple 210

 row degree 212 225

 row-degree-coefficient matrix 213

 row reduced 212

 unimodular 210

Positive definite matrix 74

Positive semidefinite matrix 74

Primary dependent column 194 215 219

 row 220

Principal minor 75

 leading 75

Pseudoinverse 208

Pseudostate 186 221

Q

QR decomposition 196

Quadratic form 73

R

Range space 49

Rank, of matrix 49

of product of matrices 72

Index Terms Links

Rational function 14

 biproper 15

 improper 15 34

 proper 14

 strictly proper 15

Rational matrix 15

 biproper 15

 proper 15

 strictly proper 15

Reachability 172

Realization 100

 balanced 197 204 227

 companion-form 203

 controllable-form 101 104 223

 input-normal 199

 minimal 189 207

 observable-form 118 119

 output-normal 197

 time-varying 115

Reduced, column 212

 row 212

Regulator problem 242 302

Relaxedness 10

Response 8 31

 impulse 10

 zero-input 8 31

 zero-state 8 31

Resultant, generalized 215

 Sylvester 193 274

Robust design 243 304

Robust tracking 243 278

Row degree 212 225

Row-degree-coefficient matrix 213

Row echelon form 220

Row indices 220

Index Terms Links

S

Schmidt orthonormalization 48

Separation property 255 266

Servomechanism 242

Similar matrices 54

Similarity transformation 54

Singular value 76

Singular value decomposition 77 204 226

Stability, asymptotic 130 138

 BIBO 122 125 138

 discrete 126 129

in the sense of Lyapunov 130 131

 marginal 130 131 138

 total 284

Stabilization 247

State 6

 pseudo- 186 121

 variable 7

State equation 2 11 15

 discrete-time 35 91 110

 discretization of 91

 equivalent 95

 periodic 114

 reduction 159 162 181

 solution of 87 93 106

 time-varying 106 110

State estimator 248 263

 asymptotic 249

 closed-loop 249

 full-dimensional 248 263

 open-loop 248

 reduced-dimensional 251 264

State feedback 232

State-space equation. See State equation

Index Terms Links

State transition matrix 108

Superposition property 8

Sylvester resultant 193 274

Sylvester’s inequality 207

System 1

 causal 6 10

 continuous-time 6

 discrete-time 6 31

 distributed 7

 linear 7

 lumped 7

 memoryless 6

 MIMO 5

 multivariable 5

 nonlinear 7

 single-variable 5

 SISO 5

 time-invariant 11

 time-varying 11

T

Total stability 284

Trace of matrix 83

Tracking. See Asymptotic tracking

Transfer function 13

 discrete 33

 pole of 15

 zero of 15

Transfer matrix 14 16

 blocking zero 15 305

 pole of 15

 transmission zero 302 311

Transmission zero 302 311

Index Terms Links

Tree 27

 branch 27

 normal 27

Truncation operator 38

U

Unimodular matrix 210

Unit-time-delay element 7 12 14 33

V

Vandermonde determinant 81

Vector 45

 Euclidean norm of 47

Infinite norm of 47

 1-norm of 47

 2-norm of 47

W

Well-posedness 284

Z

Zero 15

 blocking 15 305

 minimum-phase zero 311

 nonminimum-phase zero 311

 transmission 302 311

Zero-input response 8 31

Zero-pole-gain form 15

Zero-state equivalence 96

Zero-state response 8 31

z-transform 32

	Contents
	Preface
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Overview

	Chapter 2 Mathematical Descriptions of Systems
	2.1 Introduction
	2.1.1 Causality and Lumpedness

	2.2 Linear Systems
	2.3 Linear Time-Invariant (LTI) Systems
	2.3.1 Op-Amp Circuit Implementation

	2.4 Linearization
	2.5 Examples
	2.6 Discrete-Time Systems
	2.7 Concluding Remarks

	Chapter 3 Linear Algebra
	3.1 Introduction
	3.2 Basis, Representation, and Orthonormalization
	3.3 Linear Algebraic Equations
	3.4 Similarity Transformation
	3.5 Diagonal Form and Jordan Form
	3.6 Functions of a Square Matrix
	3.7 Lyapunov Equation
	3.8 Some Useful Formulas
	3.9 Quadratic Form and Positive Definiteness
	3.10 Singular-Value Decomposition
	3.11 Norms of Matrices

	Chapter 4 State-Space Solutions and Realizations
	4.1 Introduction
	4.2 Solution of LTI State Equations
	4.2.1 Discretization
	4.2.2 Solution of Discrete-Time Equations

	4.3 Equivalent State Equations
	4.3.1 Canonical Forms
	4.3.2 Magnitude Scaling in Op-Amp Circuits

	4.4 Realizations
	4.5 Solution of Linear Time-Varying (LTV) Equations
	4.5.1 Discrete-Time Case

	4.6 Equivalent Time-Varying Equations
	4.7 Time-Varying Realizations

	Chapter 5 Stability
	5.1 Introduction
	5.2 Input–Output Stability of LTI Systems
	5.2.1 Discrete-Time Case

	5.3 Internal Stability
	5.3.1 Discrete-Time Case

	5.4 Lyapunov Theorem
	5.4.1 Discrete-Time Case

	5.5 Stability of LTV Systems

	Chapter 6 Controllability and Observability
	6.1 Introduction
	6.2 Controllability
	6.2.1 Controllability Indices

	6.3 Observability
	6.3.1 Observability Indices

	6.4 Canonical Decomposition
	6.5 Conditions in Jordan-Form Equations
	6.6 Discrete-Time State Equations
	6.6.1 Controllability to the Origin and Reachability

	6.7 Controllability After Sampling
	6.8 LTV State Equations

	Chapter 7 Minimal Realizations and Coprime Fractions
	7.1 Introduction
	7.2 Implications of Coprimeness
	7.2.1 Minimal Realizations

	7.3 Computing Coprime Fractions
	7.3.1 QR Decomposition

	7.4 Balanced Realization
	7.5 Realizations from Markov Parameters
	7.6 Degree of Transfer Matrices
	7.7 Minimal Realizations—Matrix Case
	7.8 Matrix Polynomial Fractions
	7.8.1 Column and Row Reducedness
	7.8.2 Computing Matrix Coprime Fractions

	7.9 Realizations from Matrix Coprime Fractions
	7.10 Realizations from Matrix Markov Parameters
	7.11 Concluding Remarks

	Chapter 8 State Feedback and State Estimators
	8.1 Introduction
	8.2 State Feedback
	8.2.1 Solving the Lyapunov Equation

	8.3 Regulation and Tracking
	8.3.1 Robust Tracking and Disturbance Rejection
	8.3.2 Stabilization

	8.4 State Estimator
	8.4.1 Reduced-Dimensional State Estimator

	8.5 Feedback from Estimated States
	8.6 State Feedback—Multivariable Case
	8.6.1 Cyclic Design
	8.6.2 Lyapunov-Equation Method
	8.6.3 Canonical-Form Method
	8.6.4 Effect on Transfer Matrices

	8.7 State Estimators—Multivariable Case
	8.8 Feedback from Estimated States–Multivariable Case

	Chapter 9 Pole Placement andModel Matching
	9.1 Introduction
	9.1.1 Compensator Equations—Classical Method

	9.2 Unity-Feedback Configuration—Pole Placement
	9.2.1 Regulation and Tracking
	9.2.2 Robust Tracking and Disturbance Rejection

	9.3 Implementable Transfer Functions
	9.3.1 Model Matching—Two-Parameter Configuration
	9.3.2 Implementation of Two-Parameter Compensators

	9.4 Multivariable Unity-Feedback Systems
	9.4.1 Regulation and Tracking
	9.4.2 Robust Tracking and Disturbance Rejection

	9.5 Multivariable Model Matching—Two-Parameter Configuration
	9.6 Concluding Remarks

	References
	Answers to Selected Problems
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8

	CHAPTER 9
	INDEX

